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Abstract

Go is a programming language which is widely used in industry, and its concurrency
primitives - goroutines and shared memory channels - make it a popular choice for
development in distributed systems. Despite its inbuilt concurrency features, the
language does not provide much support against concurrency errors such as dead-
locks and race conditions.

Multiparty session types (MPST) provide a typing discipline for describing the inter-
actions between processes, and they can be used to develop message-passing APIs
where these kinds of concurrency bugs cannot happen. However, previous imple-
mentations of MPST frameworks for Go did not treat Go’s concurrency primitives,
and they were unable to express a large number real-world APIs, which limited their
practical applications.

In order to fill this gap, we present the first implementation of the MPST theory
of nested protocols, which makes it possible to call a subprotocol during the ex-
ecution of a parent protocol, possibly involving new participants. We extend an
MPST-based framework for specifying and statically verifying concurrent protocols
with the nested protocol theory, introducing the definitions of nested protocols and
nested protocol calls.

We design a scheme to generate APIs in Go for the roles taking part in each nested
protocol which ensures that they only perform I/O actions that comply with the
protocol specification. Our implementation also leverages Go’s in-built concurrency
primitives to implement the behaviour of the roles, using channels as the mechanism
for communication.

We evaluate the expressiveness of our implementation by showing how it can be
used to describe common distributed computing patterns. We then demonstrate
how these patterns can be applied to implement three case studies and analyse their
performance using a benchmark.
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Chapter 1

Introduction

1.1 Motivation

From the multiple cores in a CPU or GPU to the large server clusters in data centers,
concurrency and parallelism have become an inherent part of computers and how
they are used. This distributed computation model gives much higher performance
and scalability, as multiple tasks can be executed at the same time, but it also makes
reasoning about the software much harder, giving rise to concurrency bugs such as
race conditions and deadlocks.

In order to reason about these concurrent and parallel programs, researchers have
come up with different memory models which offer different guarantees. The two
most important ones are shared memory and message passing. Shared memory is
an abstraction where all the components can read and write to a single piece of
memory, and the changes that anyone makes become visible to the other processes.
On the other hand, message passing expresses the communications between differ-
ent components as a series of message exchanges, with each process having its own
address space.

When writing a concurrent program, understanding the concurrency model that you
are using is vital to writing correct code, but unlike the type system, which pro-
vides some correctness guarantees about the program at compile time (type safety
of assignments, method calls, etc.), programming languages generally offer little
to no support when it comes to statically detecting concurrency bugs (deadlocks,
race conditions, etc.). Although separate tools for different programming languages
have been developed to do this, like FindBugs[5] or Jlint[3] for Java, they do not
scale well with the size of the program and may not find all the concurrency bugs
in the implementation[20]. Session types[16] provide an alternative approach for
reasoning about inter-process communication in a message passing setting. They
formalise the structured interactions between the participants as a protocol, ensur-
ing that there are no communication errors or concurrency bugs in the program.
Instead of trying to find bugs in an existing implementation, session types guarantee
that the implementation will be free of concurrency bugs. Unlike data types, which
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1.1. MOTIVATION Chapter 1. Introduction

express the type of information that will be stored in memory during execution, ses-
sion types describe the communication exchanges between processes.

Session types have been extended in different directions in order to be more expres-
sive by providing more control over the interactions through means such as logical
assertions[7]. The theory has also been extended to provide greater flexibility on
how participants can join or leave a session[13] or to define protocols with paramet-
ric number of participants acting a particular role (e.g. n workers)[9].

Despite this, as protocols have grown and become more complex, different branches
of the session type theory have been unable to fully express some of their behaviour.
Often, protocols will have a highly modular structure, with a protocol calling or
depending on other protocols. Moreover, different protocols may also share some
common structure, with interactions between different participants following the
same pattern. For instance, a protocol where a client wants to communicate with
a server might initially involve authenticating with a different authentication server
in order to get a valid token. This set of interactions with the authentication server
could be considered a different subprotocol, which might also be used by many dif-
ferent applications in their authentication process.

Demangeon and Honda [12] extended the existing session type theory in order to
define nested protocols using subsessions and invitations. This new theory struc-
tures such protocols in a more intuitive way and even provides the ability to be able
to reuse subprotocols for different use cases. It also parametrises protocols so that
multiple calls to the same protocol can be made with potentially different parame-
ters, making protocol declarations more concise and readable. Subprotocols can also
invite new participants to participate in them, making it possible to define protocols
with a dynamic number of participants. We develop the first implementation of this
theory to give a session type-based framework for the specification and safe imple-
mentation of distributed programs in Go.

Go is a programming language which has become widely used in industry[2], espe-
cially for development of distributed systems, and it has been used to develop frame-
works like Kubernetes and Docker. Go defines two concurrency primitives which
simplify the development of programs involving local concurrency[1]: the ability
to spawn thousands of lightweight threads called goroutines and channels, which
enable inter-process communication and synchronisation through message passing.
Despite this, Go offers little support against concurrency bugs such as deadlocks and
race conditions. Session types can address this issue by generating implementations
of concurrent programs which are guaranteed to be correct.

Unfortunately, existing session type-based frameworks have two major issues which
limit their practical applications: first, they require the number of participants to
fixed at the start of the session, and second, the Go implementations they generate
do not take advantage of the language’s concurrency primitives[9]. In nested pro-
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Chapter 1. Introduction 1.2. OBJECTIVES

tocols, participants can be introduced into the session dynamically, enabling them
to be used to model more complex systems. This pattern of dynamically assigning
tasks is common practice in Go, where processes can easily spawn new goroutines
to perform different jobs in parallel. This makes this programming model highly
suitable for implementing nested protocols.

1.2 Objectives

The aim of this project was to produce an end-to-end solution for statically verifying
and generating the implementation of a protocol specification with nested protocols.
We extend Scribble[29], a protocol description language based on the multiparty
session types (MPST), with constructs for defining nested protocols and nested pro-
tocol calls. These extensions are based on the MPST theory presented in [12]. We
also define a code generation scheme to generate APIs for the different roles in a
protocol from a Scribble protocol specification. These APIs can then be used by the
developers to generate an implementation of the protocol, and they guarantee that
the implementation of the role will follow the behaviour specified in their protocol
declaration without a need for any runtime checks.

1.3 Contributions and Report Structure

The result of this project is an end-to-end solution for statically verifying nested
protocols and generating an API implementation in Go for all the roles participating
in the protocols. To the best knowledge of the author, this is the first practical im-
plementation of the nested protocols MPST theory presented in [12]. With this new
extended framework, a significant subset of message-passing APIs can be generated.

The workflow for the verification and API generation of nested protocols is shown in
Figure 1.1. The parts shown in green denote steps of the workflow which only need
to be carried out when generating the implementation for the protocol specification.

In Chapter 2, we introduce the typing discipline of session types and the current ap-
proach for generating the implementation of protocols from their session types using
Scribble[29]. We also describe the MPST theory of nested protocols which we use to
develop our implementation.

In Chapter 3, we describe the extensions we have introduced to Scribble[25] in or-
der to model nested protocols. We describe the new syntactic constructs we define
based on the theory presented in [12] and how we have extended the projection
definitions in Scribble to take into account the addition of nested protocols. We have
based our definition of projection on the one presented in [12], modifying it to be
able to represent a wider range of protocols.

3



1.3. CONTRIBUTIONS AND REPORT STRUCTURE Chapter 1. Introduction

Figure 1.1: Workflow for Verification and API Generation of Nested Protocols
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In Chapter 4, we discuss our design for the implementation of the Go APIs and the
factors which have affected the choices we have made when coming up with this de-
sign. In particular, we describe how some of the features of Go, our target language,
have affected the approach we follow in our implementation and how we structure
it.

In Chapter 5, we discuss how we structure our implementation and describe how
we generate the all the different components which it is comprised of from a given
protocol specification.

In Chapter 6 we describe the correspondence between the different constructs of a
Scribble protocol declaration and the implementation of the role Go APIs. Develop-
ers can use the code that we generate to implement protocols which are correct by
construction. The type system will guarantee that the messages will always be of the
correct type and our implementation will ensure that the roles follow the behaviour
specified by the protocol.

In Chapter 7, we evaluate our work through case studies implemented as nested pro-
tocols. We discuss the increase in expressiveness that nested protocols provide and
evaluate the performance of our implementation design by running a benchmark on
our case studies.

Finally, we conclude in Chapter 8 by summarising our work and outlining possible
future improvements to our implementation.

Our work on extending Scribble with nested protocols has all been implemented
on top of an existing OCaml implementation of the framework called nuscr1. Our
extension is currently only available a fork of the repository2, but it should be inte-
grated into the main repository once it has been reviewed and approved.

1https://github.com/nuscr/nuscr
2https://github.com/becharrens/nuscr
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Chapter 2

Background

In this chapter we introduce the typing discipline of session types and describe a
branch of the session types theory which defines nested protocols. We also present
Scribble[29], a protocol description language based on the theory of session types.

2.1 Session Types

2.1.1 Overview

The two main models to reason about concurrent programs are shared memory and
message passing. In shared memory, components communicate by reading and writ-
ing to a shared part of memory. This is how CPU threads and processes in a computer
communicate with each other. However, reasoning about concurrent programs with
this model can be tricky, as compiler and hardware optimisations can reorder the
program’s instructions[6]. On the other hand, in message passing, inter-process
communication is carried out by exchanging data in the form of explicit messages.
This model closely resembles how communication is carried out in distributed sys-
tems.

Message passing can be encoded using the π-calculus, a process algebra based on
name passing which was developed by Milner[23]. In this calculus, processes com-
municate by sending channel names over named channels. We present an asyn-
chronous variant of the π-calculus in Section 2.1.2. Session types[16] introduce a
typing discipline for formalising the communication exchanges between processes
in the π-calculus. The initial theory was defined only for two participants, but it
was later extended by Honda et al.[17, 18] to include multiple parties. This enabled
the session types to encode a larger number of protocols. Session types improve the
reliability of distributed systems by guaranteeing the correctness of the programs. If
the processes are well-typed, they will have session fidelity and will not suffer from
communication errors such as deadlocks, type mismatches or protocol violations.

There are already multiple implementations of session types for popular program-
ming languages such as Java[19], C[27], Go[9], Python[24], Erlang[14], etc. Due
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Chapter 2. Background 2.1. SESSION TYPES

to the set of features available to different programming languages, the implementa-
tion of MPST varies from one language to another. Some languages rely on the type
system to verify the correctness of the session’s implementation at compile-time,
while others may require run-time checks in order to detect protocol violations.

2.1.2 Asynchronous π-Calculus

The π-calculus is a process algebra for encoding communicating systems. Processes
communicate with one another through name passing, by sending and receiving
channel names over named channels. The π-calculus was originally proposed by
Robin Milner[23], but different variants have been proposed since. It is a powerful
model which has been shown to be Turing-complete[22], as it can encode the λ-
calculus. The first asynchronous π-calculus theory was presented in [8], and we
present a variant based on this theory, as defined in [30].

P, Q ::= Processes
0 Nil Process

| P | Q Parallel Composition
| (ν a) P Scope Restriction
| !P Replication
| u〈v〉 Output
| u(x).P Input

u, v ::= Identifiers
a, b, c Names

| x, y, z Variables

Figure 2.1: Syntax of monadic asynchronous π-calculus

The syntax of the asynchronous π-calculus is defined in Figure 2.1:

• 0 is the nil process, which represents the process with no actions.

• P | Q is the parallel composition of two processes. These processes can execute
in any order.

• (ν a) P is the scope restriction operation. It creates a new named channel a
that can only be used within process P and will not interfere with any other
existing names.

• !P is process replication. It represents the infinite parallel composition of pro-
cess P : P | P | P | ...

• u〈v〉 is the output operation, which sends v over u.

7



2.1. SESSION TYPES Chapter 2. Background

• u(x).P is the input operation. It receives value over channel u. After receiving
the value it will continue executing process P, replacing all references to x in P
with the received value.

Structural congruence is an equivalence relation which expresses that two processes
are equivalent/interchangeable. We define the structural congruence of asynchronous
π-calculus relation in Figure 2.2.

P ≡ P Reflexivity
P ≡Q =⇒ Q ≡ P Symmetry

P ≡Q ∧ Q ≡ R =⇒ P ≡ R Transitivity
P ≡Q =⇒ (ν a) P ≡ (ν a) Q Cong of Restriction
P ≡Q =⇒ P | R ≡ Q | R Cong of Parallel Comp
P ≡Q =⇒ u(x).P ≡ u(x).Q Cong of Input
P ≡Q =⇒ !P ≡ !Q Cong of Replication

P =α Q =⇒ P ≡ Q α−equivalence
P | (Q | R) ≡ (P | Q) | R Associativity

P | Q ≡ Q | P Commutativity
P | 0 ≡ P Zero

!P ≡ P | !P Replication
(ν a) 0 ≡ 0 Res of Nil

(ν a)(ν b) P ≡ (ν b)(ν a) P Res of Restriction
a ∉ f n(P ) =⇒ P | (ν a) Q ≡ (ν a)(P | Q) Res over Parallel Comp

Figure 2.2: Structural congruence of monadic asynchronous π-calculus

The operational semantics of the π-calculus shown in Figure 2.3 define how the
communication between the processes happens. The most important rule is COMM,
which shows how the value sent by the output process is received by the input pro-
cess and used in its continuation P by replacing the references to the variable x in P .

It is important to notice that the output process ū〈v〉 does not have any continu-
ation, which reflects the asynchronous nature of the calculus. The asynchronous
π-calculus presented above is very expressive; it is possible to encode other variants
of π-calculus using it, including synchronous π-calculus, which permits continuation
after output, and polyadic π-calculus, where it is possible to exchange vectors of
messages at once.

2.1.3 Binary Session Types

A session is a unit of conversation between participants. Session types provide a
structured way to define and reason about the communications which take place

8



Chapter 2. Background 2.1. SESSION TYPES

a〈v〉 | a(x).P −→ P {v/x}
COMM

P −→ P ′

P | Q −→ P ′ | Q
PAR

P −→ P ′

(ν a) P −→ (ν a) P ′ RES

P ≡Q Q −→ Q ′ Q ′ ≡ P ′

P −→ P ′ STRUCT

Figure 2.3: Operational semantics of monadic asynchronous π-calculus

between participants. In binary session types, these interactions happen between
two participants. A session results from the binary composition of the processes of
each participant. There are multiple similar formulations for session types in the
literature, but Figure 2.4 shows the syntax for processes in binary session types as
presented in [30].

• 0 is the nil process, which represents no actions.

• p〈e〉.P is the output operation, which sends the value e to participant p with
continuation P (the session calculus is synchronous).

• p(x).P is the input operation, which waits for participant p to send a value x.
Upon receiving the value, execution continues with P , with the received value
replacing the references to x in P .

• p . {li : Pi }i∈I is the branching operation. The process waits for participant
p to send a label l = li , for some i ∈ I . After receiving the label, execution
continues with process Pi .

• p / l .P is the selection operation. The process sends label l to participant p,
then continues executing P .

• if e then P else Q is the conditional operation. Expression e should evaluate
to a boolean. If e evaluates to true then process P is executed, otherwise, Q is
executed.

• µX .P and X are used to express recursion in the processes. The recursive
process µX .P ≡ P {µX .P/X}, that is, you are able to replace all the instances of the
recursion variable X in P with µX .P . This enables you to carry out potentially
infinite unfoldings of the process.

• e
⊕

e ′ expresses a non-deterministic choice between two expressions of the
same type, so the expression could evaluate to the result of either of the two
expressions.
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2.1. SESSION TYPES Chapter 2. Background

v ::= n Integers
| true | false Booleans
| "str" Strings

e, e ′ ::= v Values
| x Variables
| e + e ′ | e − e ′ | −e Arithmetic
| e = e ′ | e < e ′ | e > e ′ Relational
| e ∧ e ′ | e ∨ e ′ | ¬e Logical
| e

⊕
e ′ Non-determinism

p ::= Alice | Bob Participant

P, Q ::= Processes
0 Nil Process

| p〈e〉.P Output
| p(x).P Input
| p . {li : Pi }i∈I Branching
| p / l .P Selection
| if e then P else Q Conditional
| µX .P Recursive Process
| X Recursive Variable

M ::= p :: P | q :: Q Binary Composition

Figure 2.4: Processes in the binary session calculus

• The evaluation of expressions is only defined when the types match: logical
expressions are only defined on expressions which evaluate to booleans, arith-
metic expressions and e < e ′ and e > e ′ are only defined on integer values,
and e = e ′ is only defined if e and e ′ have the same type.

This session calculus is based on the π-calculus, so we can observe a great amount
of similarities between the constructs in both calculi. The main differences are the
introduction of the branching and selection operations (which can be encoded in the
π-calculus), the definition of recursion and the conditional process.

We introduce the definition of the session types in Figure 2.5. We will not give
the formal typing judgments for the processes, these can be found in [30, 16, 10].
Instead, we will give an intuition behind the correspondence between processes and
their session types:

10
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S ::= Session Type
end Termination

| p ![U ]; S Value Send
| p?[U ]; S Value Receive
| p

⊕
{li : Si }i∈I Selection

| p&{li : Si }i∈I Branching
| t Type Variable
| µt .S Recursive Type

U ::= int | bool | string Sorts for Expressions

Figure 2.5: Syntax of binary session types

• Bob(x).Bob〈x + 1〉.0 : Bob?[int]; Bob![int]; end - In order to infer the sort of the
input variable it may be necessary to see how it is used in the process.

• Alice / choice.Alice〈"hello"〉.0 : Alice
⊕

{choice : Alice![str]; end} - similarly for
branching.

• In order to be able to specify a type for a conditional process if e then P else Q,
both branches P and Q must have the same type S, and therefore the type of
the conditional process will also S.

• µt .S and t are used to specify recursive types. They work much in the same way
as recursive processes; recursive types can also unfolded by replacing instances
of t in S by µt .S.

end = end

p ![U ]; S = p?[U ]; S

p?[U ]; S = p ![U ]; S

p
⊕

{li : Si }i∈I = p&{li : Si }i∈I

p&{li : Si }i∈I = p
⊕

{li : Si }i∈I

µt .S = µt .S

t = t

Figure 2.6: Duality of binary session types

A key concept in binary session types is duality. When two processes are composed
in a session, in order for the session to progress correctly, both processes must be
carrying out complimentary operations. For instance, if Alice is trying to send a string

11
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to Bob, Bob must be waiting to receive a string from Alice, otherwise the protocol is
stuck. Similarly, if Bob is waiting for a label from Alice to decide which branch to
execute, Alice’s process must send one of the expected labels. Not only must the
constructs be complimentary, but the types of the messages being sent must also
match. Therefore, in order for a session to be correct, the processes involved must
be duals of one another. This will ensure that the binary session will always make
progress and that the session continues to be well-typed as the protocol is carried
out. The duality of binary session types is shown in Figure 2.6.

2.1.4 Multiparty Session Types

Binary session types have limited applications to real-world problems, as standard
protocols tend to be much more complex and involve more than two participants.
These interactions cannot always be correctly expressed as the composition of binary
sessions between different pairs of participants.

Multiparty session types[18] (MPST) extend the theory of binary session types to en-
able protocols to have multiple participants, thus overcoming these limitations. The
main idea is to introduce global types, which describe the multiparty interactions
within a protocol from a global perspective, as well as deriving a specification of the
behaviour of each participant as local session type through the projection operation.

There are multiple variants of processes and their respective MPST in the literature.
We present the syntax for synchronous multiparty session types defined in [28] in
Figure 2.7. Although the syntax has some minor differences when compared to the
one showed in Figure 2.4, the semantics are essentially the same. The main differ-
ence is that processes now send/receive a label with the value they communicate.
Because sessions now involve multiple participants, it is necessary to specify the
other participant for the exchange (it would have been possible to omit this infor-
mation in binary session types).

In multiparty session types, when deriving the types for protocols we consider both
the global type, which formally specifies the interactions between all the participants
in the protocol from a global perspective and local session types, which characterise
the interactions that each of the participants carry out within the global protocol.
The parallel composition of processes satisfying the session types implements the
behaviour of the global type. In this way, the implementations of the different par-
ticipants are decoupled from one another, so they could be implemented separately
and the overall implementation would be correct as long as they all follow their re-
spective session types.

We present the syntax for global and local types in Figure 2.8. Like the syntax of
processes, the definitions for multiparty session types are very similar to those of bi-
nary session types. Global types introduce a single construct for branching/selection,
p −→ q : {li (Si ).Gi }i∈I , in which participant p sends to q the label (and corresponding

12
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P, Q ::= Processes
0 Nil Process

| if e then P else Q Conditional
| µX .P Recursive Process
| X Recursive Variable
| p !l〈e〉.P Output
| ∑

i∈I
p?li (xi ).Pi Branching

M ::= Multiparty Session
| p :: P Process
| M | M Parallel Composition

p, q, r, ... Participants
e, e ′, ... Expressions
x, y, z, ... Expression variables

Figure 2.7: Processes in multiparty session calculus

value) which will determine what the continuation is.

Each participant in the protocol enacts a role in the global type. The session type
for each role is derived by projecting the global type onto that role, which essen-
tially ignores all the interactions in which the role does not take part, leaving only
the behaviour that needs to be implemented for that role within the protocol. The
projection operation is defined in Figure 2.9.

Projecting a role q on end and t (type variable) has no impact, since q is not par-
ticipating in any exchange. When projecting on p −→ p ′ : {li (Si ).Gi }i∈I , depending on
which role q is undertaking in the exchange, the projected session type will change.

• If the q = p, then the projection is a selection, as the process decides which
label and value to send to p ′. The continuations Gi must be projected onto q
as well.

• Similarly, if q = p ′, q will be waiting for a message from p, therefore the pro-
jected session type is a branching operation.

• When q does not participate in the label exchange, the projection is less triv-
ial. There are multiple approaches to resolve this situation; the one shown in
Figure 2.9 is known as plain merge. Since q does not know which branch will
have been chosen by p, all branches must have the same continuation from q ’s
viewpoint, otherwise q would not know which behaviour to implement. A dif-
ferent approach called the full merge provides a less restrictive definition[28].
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S ::= int | bool | string Sorts

GLOBAL TYPES

G ::= end Termination
| p −→ q : {li (Si ).Gi }i∈I Branching
| t Type Variable
| µt .G Recursive Type

LOCAL TYPES

T ::= end Termination
| ⊕

i∈I p !li (Si ).Ti Selection
| &i∈I p?li (Si ).Ti Branching
| t Type Variable
| µt .S Recursive Type

Figure 2.8: Syntax of multiparty session types

In binary session types, ensuring that both participants implemented session types
which were duals of one another was enough to guarantee the correctness of the
protocol. With multiple participants however, that is not the case anymore. Al-
though you can ensure that each pair of participants has dual interactions, in order
to guarantee the correctness that alone is not enough. The projection operation en-
sures that the composition of the different local types produced satisfies the global
type. Multiparty session types can therefore provide many guarantees about the
communication of well-typed multiparty sessions such as:

• Progress: A multiparty session M can either have ended (M ≡ p :: 0) or it
can continue to execute (there exists M ′ such that M −→ M ′). This means that
every sent message will eventually be received and every process waiting for a
message eventually receives one. [28, 11]

• Subject reduction: If a well-typed session M : G reduces to M ′, then M ′ : G ′ is
well typed[28].

• Type Safety: If M : G is well-typed then the session will never get stuck - a ses-
sion where there are processes which have not finished must able to continue
executing[28].

• Protocol fidelity: All interactions which happen are expressed in the global
type of the protocol[11].

• Communication Safety: There can never be a mismatch between the types of
messages which are sent and which are expected[11].
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(p −→ p ′ : {li (Si ).Gi }i∈I ) � q =



⊕
i∈I p ′!li (Si ).(Gi � q) if q = p

&i∈I p?li (Si ).(Gi � q) if q = p ′

Gi0 � q where i0 ∈ I , if q ∉ {p, p ′}
and ∀i , j ∈ I . Gi � q = G j � q

(µt .G) � q =

{
µt .(G � q) if G � q 6= t

end otherwise

t � q = t

end � q = end

Figure 2.9: Projection of global types to local types

2.1.5 Scribble API Endpoint Generation

Scribble[29, 25] is a protocol description language based on multiparty session
types. The Scribble framework translates this formal definition of the protocol into
an implementation in one of various programming languages, thus applying the the-
ory of MPST in a practical setting. A protocol describes the structure of the message
exchanges between different roles, the entities which will participate in the protocol.

We present the syntax of the Scribble language as defined in [25] in Figure 2.10. A
Scribble module can contain multiple protocols, with one of them being the desig-
nated point of entry for the computation. Protocols can call each other through the
do construct, but this essentially corresponds to inlining the called protocol. In order
for a protocol call to be valid, it must be called with the number of roles specified
in its declaration. The remaining syntactic constructs relate closely to the different
session types in the theory, described in Section 2.1.4. A message exchange is spec-
ified by the label of the message and the type of its payload, S, and the sender and
receiver roles. Although here we only specify one payload type there could poten-
tially be none or more multiple ones. Some implementations of Scribble also permit
the user to optionally specify names for each of the payload fields, but we omit this
in our notation as well. The choice construct encodes the external choice by a role,
with a set of the different continuations which can happen based on the role’s choice.
The recursive type and type variables are directly encoded by the rec and continue t
constructs, and the end session type is represented with the end construct.

In a syntactically correct protocol where all the protocol calls are valid, protocol
calls can be expanded with the interactions of each called protocol to produce a
single large protocol containing all the interactions which must be performed. Scrib-
ble then verifies that the protocol is well-formed, which ensures local protocols can
be generated for all the roles. Syntactically correct protocols can be ambiguous,
for instance, if the first message in two branches of a choice have the same signa-
ture, as other roles would not be able to tell which branch has been chosen. The

15



2.1. SESSION TYPES Chapter 2. Background

Module ::= P+

P ::= global protocol pro(role A1, ... , role An) { G }

G ::=

| choice at A { G1 } or ... or { Gn }

| a(S) from A to B; G

| rec t { G }

| continue t

| do pro(A1, ... , An); G

| end

Figure 2.10: Syntax of Scribble global protocols

local protocols are derived by projecting the global type onto each of the roles. A
communication finite state machine (CFSM) is then generated for each of the local
protocols, which expresses the valid transitions between states that a role can carry
out during the protocol. These transitions represent a message exchange with a dif-
ferent participant.

An example of a global protocol can be seen in Figure 2.11, which shows a calculator
protocol carried out by two roles: a client who enters the operands and the server
who carries out the operation. The protocol has a recursive loop in which the client
can choose to either send two numbers to multiply to the server, get the result back
and start over again or quit the protocol. The resulting CFSM for the server S can be
seen in Figure 2.12.

1 global protocol Calc(role S , role C ) {
2 rec Loop {
3 choice at C {
4 multiply(int, int) from C to S;
5 result(int) from S to C ;
6 continue Loop ;
7 } or {
8 quit() from C to S ;
9 terminate() from S to C ;

10 }
11 }
12 }

Figure 2.11: Calculator Protocol

Using these CFSM representations, Scribble can generate role APIs in different target
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Figure 2.12: CFSM for role S in the Calculator Protocol

programming languages which the developers can use to implement the protocols.
In an object-oriented programming language like Java, the code generation scheme
converts each state in the CFSM into a different class. Each outgoing transition is
implemented as a class methods which carry out the necessary communication op-
erations and returns the next state. Using these classes, the user can implement
the protocol by chaining method calls, transitioning only between valid states until
the final state is reached, which will have no outgoing transitions. However, to en-
sure the correctness of the implementation every state must only be used once, and
enforcing this may require runtime checks depending on the programming language.

Implementations using the Scribble-generated APIs benefit from the correctness guar-
antees of MPST, ensuring that there are no communication errors and that the pro-
tocol is followed properly.

2.2 Nested Protocols

2.2.1 Motivations

The theory of session types has been extended in different directions in order to be
able to become more expressive. Some advances have made it possible to anno-
tate the protocol with logical assertions to define extra properties that the protocol
should meet[7]. Other developments have made it possible to express protocols with
parametrised roles[9] (expressing protocols where n participants carry out particu-
lar roles), or to have greater control over how participants can join or leave a session
through a dynamic multiparty session[13].
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Demangeon and Honda [12] try to address a different challenge: how to struc-
ture and represent and the protocols used in networking and in distributed systems,
which are becoming increasingly large. In many cases, these protocols are highly
modular, and they often share a simiar structure. In order to better define and man-
age these protocols, they extend the theory of session types with nested protocols,
which make it possible to define complex protocols using a simpler modular struc-
ture. Using this approach, protocols which have a similar structure can be grouped
together under a single parametrised protocol, and complex protocols which might
call other protocols can be expressed by making a call to those subprotocols. More-
over, different calls to the same subprotocol can be made with different parameters
to achieve different behaviours. In their theory, subprotocols can also bring in new
participants by ‘inviting’ them to participate. This can help simplify some protocols,
as it enables users to specify protocols where participants are brought in/contacted
only if required.

2.2.2 Nested Session Calculus

The theory they proposed is based on the idea of nesting protocols, where a parent
protocol may define independent subprotocols and call them during its execution.
Calls to a protocol can pass in different kinds of values as parameters such as typed
values (numbers, strings, etc.), roles from the parent protocol which will participate
in the subprotocol and even other protocols which might be used during the call,
similar to higher-order functions in functional programming.

Subprotocols are implemented as subsessions. The participant calling the protocol
will create a new private session for its execution, and will send internal invitations
to all the roles in the parent protocol which will participate, and external invitations
to bring in new agents. In this way, only the roles which have a access to the sub-
session, so the other roles in the parent session will not be able to interfere with it.
This makes it possible to have private interactions between roles in a public session.
Using the Scribble language described in Section 2.1.5, it is also possible to define
subprotocols, but as opposed to this theory, protocols calls in Scribble are carried out
within a single session, because a protocol call corresponds to inlining the interac-
tions of that protocol. This means that the number of roles participating in Scribble
protocols have to be known statically, whereas in nested protocols they can be dy-
namically introduced through protocol calls.

Calling subprotocols also abstracts away their actual implementation, which means
that the implementation of the subprotocol can be changed (e.g. to change how
authentication is carried out or to improve the protocol’s security) without changing
the implementation of the parent protocol. Subprotocols also give a better separa-
tion between the different execution branches of the protocol, as different external
participants can be invited only when required, reducing the complexity and utilisa-
tion of resources. For instance, in an HTTP-like protocol, when a proxy received a
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request from a client, it could have the choice of either returning a cached response
directly or to initiate a Contact protocol to involve the server and get the response.

P, Q ::= Processes
0 Nil Process

| P | Q Parallel Composition
| a(x).P Receive Ext. Invitation
| a〈s〉.P Send Ext. Invitation
| P + P Non-determinism
| k?[r,r ]i∈I {li (xi ).Pi } Branching
| k ![r,r ]l〈v〉.P Selection
| (ν u) P Scope Restriction
| new s on k with (ṽ)&(ã as r̃ ).P Subprotocol Call
| s ↓ [r, r1 : r2](x).P Receive Internal Invitation
| s ↑ [r, r1 : r2]〈s〉.P Send Internal Invitation
| µX (x).P〈v〉 Recursive Process
| X 〈v〉 Recursive Variable

s, k, ... Session names
a, b, u, ... Shared channels
v Values
r, r ′, ... Role Identifiers
x, y, z, ... Variables

Figure 2.13: Processes in Session Calculus for Nested Protocols

Figure 2.13 shows the session calculus presented in the paper, which includes the
syntax for invitations and defining protocols. The calculus is based on the π-calculus
and shares a lot of the constructs of other existing session calculi[7]. Names are di-
vided into two kinds: session channels, which handle all exchanges within a session,
and shared channels, used to send and receive external invitations. The constructs
presented is similar to the one described in Section 2.1.4, but it also introduces new
some new constructs:

• Parallel composition, scope restriction and the nil process are defined as before.

• Recursion is also defined in a similar way, an additional value can be passed in
to the recursive call which may be used when the recursive call is expanded.

• a(x).P and a〈s〉.P are used for receiving and sending external invitations over
the shared channel a.
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• P + P is the non-deterministic process. Execution can continue with either one
of the two processes.

• k?[r1,r2]i∈I {li (xi ).Pi } is the branching operation from r1 to r2 with continuation
Pi in session k. k ![r1,r2]l〈v〉.P is the selection operation, its dual primitive.

• s ↓ [r, r1 : r2](x).P is the action for waiting for an internal invitation sent by r to
r1 in order to play role r2 in session s.

• s ↑ [r, r1 : r2]〈s〉.P is the action of sending an invitation from r to r1 in order to
play role r2 in session s.

• new s on k with (ṽ)&(ã as r̃ ).P is the operation for calling a subprotocol. It in-
troduces a new subsession s within the parent session k, passing in arguments
ṽ and using shared channels ã to send the external invitations.

2.2.3 Nested Session Types

The paper also extends the syntax of session types to include the types for defining
and calling subprotocols as well as sending and receiving invitations. The extended
syntax for local and global types is shown in Figure 2.14. They define kinds (types
for types) in order to formalise the definition of protocols. These kinds include ¦,
which represents the protocol type, and −→, which denotes parametrisation. The
definition of global types is essentially the same as before:

• Termination, branching and recursion remain mostly unchanged. They also
define the type for parallel composition.

• They introduce the construct G1
⊕r G2 to represent located choice, where role

r can choose between two different branches.

• let P = λr̃ 1, ỹ 7→ new r̃ 2.G in G ′ defines a subprotocol P . The vector of roles
r̃ 1 defines a subset of the roles which will participate in the protocol, which will
be carried out by roles from the parent protocol that will be internally invited.
On the other hand, vector r̃ 2 contains the set of roles which will be externally
invited. The protocol also takes in vector of values ỹ .

• r calls P 〈r̃ , ỹ〉.G is the subprotocol call carried out by role r , internally invit-
ing roles r̃ and passing in the values ỹ .

The local session types have the same constructs as before, as well as the new con-
structs to handle invitations and protocol calls:

• Termination, branching, selection and recursion are almost unchanged, and
they introduce a type for parallel composition.

• The construct T1
⊕r T2 represents a located (internal) choice by role r .
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• call P : G with (ṽ as ỹ : S̃)&(r̃ 2).T is a call to the subprotocol P , which has
global type G, sending a vector of values ṽ as arguments with sorts S̃ and
externally inviting the roles in r̃ 2 to participate in the subprotocol.

• Sending and accepting invitations for a role r are handled by the req P [r ]〈ṽ〉 to r.T
and ent P [r ]〈ṽ〉 from r.T constructors respectively.

Val ::= int | bool | string Sorts

K ,S ::= Role | Val | ¦ | (K1 × ... × Kn) −→ K Kinds

GLOBAL TYPES

G ::= end Termination
| let P = λr̃ 1, ỹ 7→ new r̃ 2.G in G ′ Subprotocol Def
| r calls P 〈r̃ , ỹ〉.G Subprotocol Call
| r1 −→ r2 :

∑
i∈I {li (Si ).Gi } Branching

| G1
⊕r G2 Located Choice

| G1 | G2 Parallel Composition
| t Type Variable
| µt .G Recursive Type

LOCAL TYPES

T ::= end Termination
| send[r ]!i∈I {li (xi : Si ).Ti } Selection
| get[r ]?i∈I {li (xi : Si ).Ti } Branching
| T1

⊕
T2 Located Choice

| T1 | T2 Parallel Composition
| call P : G with (ṽ as ỹ : S̃)&(r̃ 2).T Subprotocol Call
| ent P [r ]〈ṽ〉 from r.T Accept Invitation
| req P [r ]〈ṽ〉 to r.T Send Invitation
| t Type Variable
| µt .T Recursive Type

Figure 2.14: Syntax of Session Types for Nested Protocols

As before, deriving the local types from the global type is done through the projec-
tion operation, although now it becomes necessary to define a protocol environment
to hold the types of the nested protocols, which gets updated by the let in construc-
tor.
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Figure 2.15 shows the definition of projection for the nested protocol definition and
nested protocol call. Projection on the remaining constructors is defined in same way
as before. The projection of a protocol definition updates the environment with the
protocol’s global type and signature and continues recursively projecting the type.
When projecting a nested protocol call onto a role r p , there are multiple cases to
consider:

• if r p is the caller but does not participate itself in the subprotocol, the projec-
tion must only send out the internal invitations in parallel, as well as initialising
the protocol call and executing the projection of the continuation.

• if r p is the caller as well as a participant, then it must send all the internal
invitations to the participating roles, including itself, and it must also accept
its own invitation. The role must also initialise the protocol call and proceed
to execute the projection of the continuation.

• if r p did not call the protocol but is a participant of the protocol, then it must
simply accept the invitation, with the continuation being the projection of the
continuation of the global type.

• otherwise, r p is neither a participant or the caller, so the projection is the
projection of the continuation of the global type.

Figure 2.15: Projection of Global Type in Nested Protocols[12]

2.2.4 Returning Values from Subprotocols

One limitation of the formulation expressed above is the inability of communication
from a subsession back to the parent subsession. This means that it is impossible to
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express in a session type the relationship between a value calculated during a sub-
session and a value which a role might send after the nested protocol has ended.

For example, in the Client-Proxy-Server protocol described in Figure 2.16, the value
the server returns is ans, but that value cannot be seen outside of the Contact subpro-
tocol, so the proxy (middle) can only return ans0 after completing the call to Contact.
This protocol description does not provide any guarantees that these two values are
the same. The paper proposes some further extensions to the syntax of session types
so that the protocol ends by returning a value to the role which initiated the call in
order to be able to return information from the subprotocol.

Nevertheless, the current theory will suffice in most scenarios, as the kinds of the
messages alone restrict what values can be sent, and it is up to the user’s implemen-
tation to decide which value to send. Any value which satisfies this constraint can
be considered a valid implementation of the protocol.

Figure 2.16: Example of Global Session Type for CPS Protocol[12]
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Extending Scribble with Nested
Protocols

In this chapter we extend the Featherweight Scribble language[29] to model nested
protocols. We extend the syntax of both global and local types with constructs for
representing nested protocols similar to the ones described in [12]. We introduce
a precise definition of a protocol’s scope - the protocols which are you are able to
call from within a protocol, and extend the definition of well-formedness to take our
syntax extensions into account. Finally, we extend the projection of Scribble global
protocols with the new constructs we introduce.

3.1 Syntax Extensions

In Section 2.1.5 we described how the Scribble syntax already has most of the con-
structs needed to encode session types, including constructs for encoding labelled
message exchanges, recursion and external choice. The session types presented in
the nested sessions paper[12], which we describe in Section 2.2.3, also include some
constructs which are not currently implemented in Scribble, like the internal choice
session type. However, we have decided to focus on implementing the main func-
tionality related to nested protocols, such as making it possible to declare protocols
inside other protocols and introducing the use of invitations in order to participate
in a nested protocol call, rather than extending Scribble with other non-essential
constructs. We will therefore not support internal choice, but this should not be a
great limitation, as the external choice construct will suffice for most use cases.

In the nested protocols theory, a nested protocol call can also specify values which
should be passed into the subsession, but we will not support this ability to send
values when calling a nested protocol explicitly in our protocol declarations. In-
stead, in our implementation we will provide a means for the user to pass in values
to subsessions by initialising the state of the different roles which will participate in
the nested protocol. Hence, this omission should not have a great impact in practice.

We introduce a precise definition for the scope of protocols, which the original
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paper[12] did not handle explicitly. Through the use of scopes, the users can en-
capsulate different behaviours as nested protocols which can only be used inside the
protocol where they are defined, and these scope restrictions will be verified by the
framework.

3.1.1 Global Protocols

We have extended the definition of a Scribble module, which we described in Sec-
tion 2.1.5, with nested protocols. Previously, a module was a collection of global
protocols. With our extension, it can also contain zero or more top-level nested pro-
tocols, although it must still contain at least one global protocol (with no dynamic
roles) which can be used as the entry point for the computation. As in [12], nested
protocols can also be defined inside both nested and global protocols.

Although nested protocols could in theory be defined anywhere within a scope, for
ease of parsing in the Scribble implementation and to provide more structured Scrib-
ble modules, we restrict the location where nested protocols can be declared. At the
top-level, any nested protocols must be defined before the global protocol declara-
tions, and when defined within other protocols, they must be declared before any
of the protocol’s interactions. These restrictions do not impact the expressiveness of
the implementation, as the order of the protocol declarations within a scope does
not matter.

Module ::= N∗ P+

PBody ::= N∗ G

N ::= nested protocol pro(role A1, ... , role An; new role B1, ... , role Bm) { PBody }

P ::= global protocol pro(role A1, ... , role An) { PBody }

G ::=

| choice at A { G1 } or ... or { Gn }

| a(S) from A to B; G

| rec t { G }

| continue t

| do pro(A1, ... , An); G

| A calls pro(A1, ... , An); G

| end

Figure 3.1: Syntax for Scribble module with nested protocols

A formal specification of our proposed syntax for Scribble modules with nested pro-
tocols is given in Figure 3.1, and we provide some examples of global and nested
protocols in Figure 3.2. We introduce several new keywords in order to define nested
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protocols and calls to nested protocols, while trying to preserve as much of the orig-
inal syntax and behaviour as possible.

• The nested keyword can be used to define nested protocols with dynamic par-
ticipants. Dynamic participants are separated from regular participants by a
new keyword in the protocol declaration, but it is not necessary for nested pro-
tocols to have dynamic participants, in which case the latter part of the decla-
ration can be omitted. When a protocol is defined within another protocol, it
restricts the scope where it can be used, much like defining a nested function
in a programming language. We also support shadowing of protocol names:
if you redefine a protocol in an inner scope, then it will override the previous
definition in that scope and all its subscopes.

• The calls construct is used to introduce a new subsession when a role calls
a nested protocol, inviting a set of roles to carry out the interactions of the
nested protocol. In a calls construct the dynamic participants of the nested
protocol are omitted - it is only necessary to specify which existing roles will
be participating, as the remaining roles will be dynamically created.

• We modify the semantics of the do construct, which previously resulted in ex-
panding the interactions of the called protocol, to instead create a subsession.
Its semantics are equivalent to a calls construct, where the first participant in
the protocol is treated as the caller. Even though they express the similar be-
haviours, we restrict the use of the calls construct to only call nested protocols
and the do construct to call global protocols.

• The distinction between global and nested protocols is important, and needs
to be verified to ensure that any protocol call used the correct construct. More-
over, protocol calls need to be verified to ensure that the call matches the
signature of the protocol which is in scope, as protocol declarations with the
same protocol name in different scopes may involve a different number of par-
ticipants.

• As we did in Section 2.1.5, we have simplified the notation for labelled mes-
sages. Even though we only write down labelled messages with one payload
field, Scribble also supports user-defined labelled messages with zero or more
payload fields. In our implementation the user may optionally define names
for any of the payload fields as well, as long as there are not any duplicate field
names within the message payload.

• As before, the end construct can be omitted when writing down protocol dec-
larations.

3.1.2 Scopes

As it was briefly mentioned in Section 3.1, the definition of nested protocols pre-
sented in [12] did not handle the scopes in which protocols could be called explic-
itly. In our Scribble extension we provide a more precise definition of protocol’s
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1

2 nested protocol NestedProtocol(role X; new role Y) {
3 do GlobalProtocol(X, Y);
4 }
5

6 global protocol GlobalProtocol(role A, role B) {
7 B calls NestedProtocol(A);
8 }

Figure 3.2: Example protocols showcasing our Scribble syntax extensions

scope and how it affects which protocols can be called from within different proto-
cols in a Scribble module.

In a Scribble module we have the top-level scope, where the user can define global
and nested protocols which can be called from any protocol, no matter how deeply
nested its declaration is. As we mentioned in Section 3.1.1, each protocol declara-
tion introduces a new scope of its own. Any nested protocols defined within are not
visible outside that protocol, but can be used in that protocol’s implementation and
any nested protocols defined within.

The main restriction we have applied is that within any given scope, there must never
be a clash between protocols of the same kind. For simplicity, the naming conflicts
only take into account the name of the protocol rather than the full signature. This
means that global protocols, which can only be defined at the top level, must always
have unique names, and no two nested protocols defined in the same scope can have
the same name.

Global vs Nested Protocols

The distinction between the do and calls constructs for calling global and nested
protocols makes it possible to unambiguously define a nested protocol and a global
protocol with the same name without one definition shadowing the other. However,
in this case the user must be careful when calling the protocol, especially if they have
signatures with the same number of non-dynamic participants, as it can be easy to
confuse which protocol call was intended. If the signatures are different this should
be less of a problem, as trying to call a protocol with the wrong number of partici-
pants will produce an error.

As we mentioned in Section 3.1.1, defining a nested protocol with the same name as
a nested protocol in an outer scope will override the definition in the current scope
and any inner scopes. Global protocol definitions cannot be shadowed, as they can
only be defined within the top-level scope. When checking that protocol calls are
valid it is important to keep track of the protocols which are currently in scope and
their signatures to ensure that the call matches the number of roles in the protocol’s

27



3.1. SYNTAX EXTENSIONS Chapter 3. Extending Scribble with Nested Protocols

signature.

3.1.3 Local Protocols

After extending the syntax for Scribble global protocols we also had to modify the
definition of projection of Scribble global types presented in [25] to include these
new constructs, which we describe in Section 3.4. We therefore extend the syntax of
Scribble local types with constructs for sending and receiving invitations following
the session types presented in [12].

L ::= local protocol A@pro(role A1, ... , role An; new role B1, ... , role Bm) { T }

RecvMsg ::=

| a(S) from B ;

| accept C@pro(A1, ... , An; new B1, ... , Bm) from A ;

T ::=

| choice at A {T1} or ... or {Tn}

| rec t { T }

| continue t

| a(S) to B; T

| RecvMsg T

| invite(A1, ... , An) to pro ; T

| create(role B1, ... , role Bm) in pro ; T

| end

Figure 3.3: Syntax of Scribble local protocols extended with invitations

Our proposed extensions to the syntax of Scribble local protocols are shown in Figure
3.3, and some examples of local protocols, which correspond to the projections of
the protocols in Figure 3.2, are can be seen in Figure 3.4. We have kept all the origi-
nal Scribble constructs and added three new ones for sending invitations, accepting
invitations and for initializing dynamic roles:

• The sending of internal invitations is expressed by the invite construct, which
specifies the roles which are going to participate and the name of the protocol
to which they are invited. The syntax for the invite construct shown above
can be seen as a shorthand for sending a series of individual invitations in
parallel (asynchronously) to all the roles who are going to participate in the
protocol. Indeed, this idea could be expressed with an alternative notation
such as: {invite(Ai ) to pr o; }i∈{1, ... , n}; T

28



Chapter 3. Extending Scribble with Nested Protocols 3.2. WELL-FORMEDNESS

• Bringing new participants into the subsession through external invitations is
done through the create statement, which specifies the dynamic roles of the
protocol to be created. Similarly to the invite construct, the proposed syntax
can be seen as a shorthand for the sending in parallel of external invitations.

• Internal invitations are accepted through the accept construct, which contains
information about the participant which sent the invitation, the local protocol
which the role is going to be carrying out as well as all the other roles which
will be participating as well.

1

2 local protocol X@NestedProtocol(role X; new role Y) {
3 invite(X, Y) to GlobalProtocol;
4 accept A@GlobalProtocol(X, Y);
5 }
6

7 local protocol Y@NestedProtocol(role X; new role Y) {
8 accept B@GlobalProtocol(X, Y);
9 }

10

11 local protocol A@GlobalProtocol(role A, role B) {
12 accept X@NestedProtocol(A; new Y) from B;
13 }
14

15 local protocol B@GlobalProtocol(role A, role B) {
16 invite(A) to NestedProtocol;
17 create(role Y) in NestedProtocol;
18 }

Figure 3.4: Examples of Scribble local protocols showcasing the new syntax constructs

3.2 Well-formedness

In order to be able to generate the implementation of a protocol specified by the
user, the Scribble framework must first verify that the protocol is well-formed.
According to the definitions in [25, 12], in order for a protocol to be well-formed it
must be projectable and all protocol calls must be valid. A protocol is projectable if
the projection is defined for all the participants of that protocol, and a protocol call is
valid if the called protocol is defined/in scope, it is called with the correct number of
roles and all the roles involved are distinct and in scope (participating in the current
protocol).
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Despite our extensions to the Scribble framework, the well-formedness property re-
mains the same. We must highlight the importance of ensuring that protocol calls
are valid after introducing nested scopes and the ability to shadow protocol decla-
rations, which make it possible users to declare protocols with the same name and
different declarations in different scopes. We also extend the definition of projection
given in [12] by incorporating the full merge operator, which the original paper did
not. In order to do this, we extend the definition of the merge operator defined in
[25] to incorporate our new constructs for representing protocol calls.

3.3 Renaming Protocols

The representation of Scribble nested protocols we have defined in Section 3.1.1
is similar to the representation given in [12], but the distinction between global
and nested protocols and protocol calls in Scribble makes it more complicated and
verbose to define the projection of protocols. Name clashes between protocols in
different scopes will also need to be resolved at some point before code generation
to be able to generate a correct implementation of the protocols, so we introduce an
intermediate step before projection in order to solve these issues.

We propose introducing an extra preprocessing step on the protocols before project-
ing them, once the global and nested protocols have been validated to ensure they
are syntactically correct and that all protocol calls are valid. The objective in this
step is to generate a simpler, flattened representation of the Scribble module, where
all the protocols are stored in a single set. In order to achieve this, name clashes
need to be resolved to ensure that all protocol names are unique, and all references
to the protocols in protocol calls must be renamed to the new unique names. Ensur-
ing that all protocol names are globally unique has the added advantage of enabling
us to remove the distinction between nested and global protocols and treat protocol
calls to both global and nested protocols uniformly, as there can be no ambiguity
with regards to which protocol is going to be called.

The result of this renaming process is a set of protocols which do not contain any
nested protocols within, where both global and nested protocols have been con-
verted into this intermediate representation. We define a different syntax for this
representation, as shown in Figure 3.5, which is essentially the same as a nested
protocol declaration without any nested protocols inside.

protocol P (role A1, ..., role An ; new role B1, ..., role Bm) { G }

Figure 3.5: Intermediate representation of protocols after renaming

We present a renaming algorithm which uses two environments. The first one maps
the original protocol names that were accessible in the current scope to the unique
names of the protocols they refer to, while the second environment holds the set of
all the unique protocol names which have been generated. The scope environment
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can be used to update the protocol calls in the interactions of a protocol, and the
protocol name environment is necessary to generate globally unique protocol names.
We define the algorithm in pseudocode in Figures 3.6 and 3.7.

3.3.1 Renaming Algorithm

The first step in the algorithm is to aggregate the information from the protocol
declarations in the top-level scope into both environments. When resolving clashes
between top-level nested and global protocols we have decided to always change the
nested protocol names and keep the global protocol names without changing them.
With this approach we are able to only keep a single environment for the nested pro-
tocols which are in the current scope, as global protocol names will not change, so
there is no need to track them in a separate environment. We add the unique names
of both the top-level global and nested protocols to the protocol name environment,
and store a mapping from the nested protocol names to their new unique names in
the scope environment. As well as updating the environments, we also change the
protocol names in the nested protocol declarations. This process can be seen in lines
15-25 of the rename_module function in Figure 3.7.

Once we have all the information about the top-level scope, we can proceed to re-
cursively rename the interactions of all the protocols, aggregating all the resulting
protocols in a single set. In order to update the interactions of a protocol, we must
first update both the scope and protocol name environments with the nested proto-
col declarations inside the current protocol. The procedure for how this can be done
is shown in the function rename_nested_protocols in Figure 3.6. We first generate
a new unique name for each of the protocols and add it to the protocol name en-
vironment. The scope environment is updated by creating/modifying the mapping
for the protocol’s old name so that it refers to the new name. We also update the
declarations of the nested protocols with their new unique names here. Once both
environments have been updated, we recursively rename the interactions of each of
the nested protocols and store them in the result set. Finally, we update the protocol
names in the current protocol’s interactions using the scope environment and add
the protocol with its new interactions to the result set.

The procedure we have just described is implemented in the rename_and_flatten_
protocols function in Figure 3.7. We need to return the updated protocol name en-
vironment as well as the set of renamed protocols to ensure that the protocol names
we generate are unique. Otherwise, clashes could occur between protocols defined
inside different nested protocols, but we can discard the updated scope environment
once the protocol’s interactions have been updated, as it does not contain any useful
information outside the current scope.
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3.3.2 Renaming Protocol Interactions

Renaming a protocol’s interactions simply requires recursively traversing the global
type, as shown in the rename_protocol_calls function in Figure 3.6. The only in-
teractions which change are the global protocol calls and nested protocol calls. In
order to treat both types of calls in the same way, global protocol calls are converted
explicitly to the calls construct with the first participant initiating the call. As global
protocol names were not changed, the protocol name in the call remains the same.
On the other hand, updating nested protocol calls requires looking up the unique
protocol name corresponding to the protocol being called in the scope environment
and building a new calls construct with it.
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1 def rename_protocol_calls(G, ScopeEnv):
2 match G with:
3 | A calls P(A1, ... , An); G1 ->
4 newP = ScopeEnv[P]
5 newG1 = rename_protocol_calls(G1, ScopeEnv)
6 return A calls newP(A1, ... , An); newG1
7 | do P(A1, ... , An); G1 ->
8 newG1 = rename_protocol_calls(G1, ScopeEnv)
9 return A1 calls P(A1, ... , An); newG1

10 | choice at A { Gi }i∈I ->
11 return choice at A

{ rename_protocol_calls(Gi, ScopeEnv) }i∈I
12 | rec t { G1 } ->
13 newG1 = rename_protocol_calls(G1, ScopeEnv)
14 return rec t { newG1 }
15 | a(S) from A to B; G1 ->
16 newG1 = rename_protocol_calls(G1, ScopeEnv)
17 return a(S) from A to B; newG1
18 | continue t ->
19 return continue t
20 | end ->
21 return end
22

23 def rename_nested_protocols(nested_protocols, ScopeEnv,
ProtocolNames):

24 renamed_protocols = ;
25 for (nested protocol P(role A1, ... , role An;

new role B1, ... , role Bm) {nested_protos; G}) in
nested_protocols:

26 newP = UNIQUE_NAME(P, ProtocolNames)
27 ScopeEnv = ScopeEnv[P -> newP]
28 ProtocolNames = ProtocolNames

⋃
{newP}

29 renamed_protocols = renamed_protocols
⋃

{ nested protocol
newP(role A1, ... , role An; new role B1, ... , role Bm)
{nested_protos; G} }

30 return (renamed_protocols, ScopeEnv, ProtocolNames)

Figure 3.6: Algorithm for renaming protocol interactions
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1 def rename_and_flatten_protocols(nestedProtocol, ScopeEnv,
ProtocolNames, AllProtocols):

2 match nestedProtocol with:
3 | nested protocol P(role A1, ... , role An; new

role B1, ... , role Bm) {nested_protocols; G} ->
4 (ScopeEnv, ProtocolNames, nestedProtocols) =
5 rename_nested_protocols(nestedProtocols, ScopeEnv,

ProtocolNames)
6 for nestedProtocol in nestedProtocols:
7 ProtocolNames, AllProtocols =
8 rename_and_flatten_protocols(nestedProtocol,

ScopeEnv, ProtocolNames, AllProtocols)
9

10 newG = rename_protocol_calls(G, ScopeEnv)
11 AllProtocols = AllProtocols

⋃
{ protocol

P(role A1, ... , role An; new role B1, ... , role Bm)
{ newG } }

12 return ProtocolNames, AllProtocols
13

14 def rename_module(nested_protocols, global_protocols):
15 ProtocolNames = ;
16 ScopeEnv = {}
17 TopLevelProtocols = ;
18 AllProtocols = ;
19 for (global protocol P(role A1, ... , role An) {nested_protos;

G}) in global_protocols:
20 ProtocolNames = ProtocolNames

⋃
P

21 TopLevelProtocols = TopLevelProtocols
⋃

{nested protocol
P(role A1, ... , role An; ;) {nested_protos; G}}

22

23 renamed_nested_protocols, ScopeEnv, ProtocolNames =
24 rename_nested_protocols(nested_protocols, ScopeEnv,

ProtocolNames)
25 TopLevelProtocols = TopLevelProtocols

⋃
renamed_nested_protocols

26 for top_level_protocol in TopLevelProtocols:
27 ProtocolNames, AllProtocols =

rename_and_flatten_protocols(top_level_protocol,
SetupEnv, ProtocolNames, AllProtocols)

28

29 return AllProtocols

Figure 3.7: Algorithm for renaming protocols in a Scribble module
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3.4 Projection

Like the definition of projection presented in [12], projecting a global or nested pro-
tocol requires having an environment which keeps track of all the protocols which
are in scope. Our definition of projection is defined on the flattened representa-
tion of the Scribble module we described in Section 3.3, where all the protocols
are stored in one large set and the distinction between global and nested protocols
has been removed. Moreover, in order to successfully rename all the protocols the
original Scribble module must have been checked to ensure all protocol calls are
valid. From this flattened representation, building the projection environment is a
trivial process, where the protocol declarations in the set can be aggregated to create
a mapping from protocol names to their role signatures (P 7→ {A1, ... , An; B1, ... , Bm}).

It is not a problem to store the signatures of all the protocols in the environment,
because in the validation step and the renaming process we will have already verified
that the scope restriction is not violated, so the protocols will only ever need to look
up protocols which are defined in their scope in the projection environment. The
definition of projection is undefined for protocol calls to protocols which are not in
the environment, but this case should never arise if the protocols have passed the
previous validation steps we have described.

3.4.1 Projection of Global Protocols

In order to generate all the local protocols in a Scribble module, we must project
every protocol onto every role taking part in it, which will generate a much larger
set of local protocols. We define the projection of a Scribble protocol P onto a role
A in Figure 3.8.

(protocol P(role A1, ... , role An; new role B1, ... , role Bm) {G}) ↓Env
A =

If A ∈ {A1, ... , An, B1, ... , Bm} :

local protocol A@P(role A1, ... , role An; new role B1, ... , role Bm) {G ↓Env
A }

Otherwise : undefined

Figure 3.8: Projection of a Scribble protocol

The projection operation on global protocols remains the same as defined in [25] for
all constructs except the choice. Figure 3.9 shows these definitions, which we have
taken from the paper. We denote P (G) as the set of roles participating in protocol G.

Previously, the do construct would be expanded before projection, which we do not
do. However, after removing the distinction between global and nested protocols,
all calls to global protocols using the do construct will have been converted to calls,
so we also do not need to define a rule for projecting do.
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(a(S) from B to C; G ′) ↓Env
A =

a(S) to C; (G′ ↓Env
A ) if A = B

a(S) from B; (G′ ↓Env
A ) if A = C

G′ ↓Env
A otherwise

(rec t {G′}) ↓Env
A ={

rec t {G′ ↓Env
A } if A ∈ P (G ′)

end otherwise

(continue t) ↓Env
A = continue t

(end) ↓Env
A = end

Figure 3.9: Projection of constructs taken from Featherweight Scribble[25]

Projection of Protocol Calls

The projection of the calls construct is based on the projection of the protocol call
which was defined in [12], and it considers the same four cases. When the projected
role is making a call, it must send all the invitations to the other participants, po-
tentially including itself. It must also send external invitations to the new dynamic
participants which will take part in the subsession, if any. If there are no dynamic
participants, then the create construct can be omitted. If the projected role is taking
part in the subsession, then it must also accept the invitation to the appropriate role
in the nested protocol from the caller. If the projected role is neither the caller or
a participant in the protocol call, then the protocol call can be ignored. The formal
definition of the projection of the calls construct is shown in Figure 3.10

3.4.2 Projection of Choice

The Scribble choice construct does not have a single well-defined semantics and
projection definition. Different implementations of Scribble may have marginally
different definitions about what constitutes a well-formed choice. We base our defi-
nition in the Multiparty Session Types[11] and the definition of the Scribble choice

construct presented in [25]. We define the projection of the choice construct in
Figure 3.12.

Before taking nested protocols into account, we define a choice construct as a di-
rected choice from the participant making the choice, e.g. B, to a single participant,
which receives a distinct first message from B in each choice branch. Through this
first message, the receiving role will be able to identify which choice B makes. With
the addition of nested protocols and invitations, labelled messages a(S) are not the
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(C calls P (A1, ... , An); G ′) ↓Env, P 7→ {D1, ... , Dn; B1, ... , Bm}
A =

invite(A1, ... , An) to P; if A = C, ∃i .C = Ai

create(role B1, ... , role Bm) in P;

accept Di@P(A1, ... , An; new B1, ... , Bm) from C;

(G′ ↓Env, P 7→ {D1, ... , Dn; B1, ... , Bm}
A )

invite(A1, ... , An) to P; if A = C, C ∉ {A1, ... , An}

create(role B1, ... , role Bm) in P;

(G′ ↓Env, P 7→ {D1, ... , Dn; B1, ... , Bm}
A )

accept Di@P(A1, ... , An; new B1, ... , Bm) from C ; if A 6= C, ∃i .C = Ai

(G′ ↓Env, P 7→ {D1, ... , Dn; B1, ... , Bm}
A )

(G′ ↓Env, P 7→ {D1, ... , Dn; B1, ... , Bm}
A ) otherwise

Figure 3.10: Projection of the calls construct

R1 = R2 =⇒ IS_MSG_FROM(R2, a(S) from R1 to C; G )

R1 = R2 =⇒ IS_MSG_FROM(R2, R1 calls P(A1, ... , An); G )

R1 = R2 =⇒ IS_RECV_FROM(R2, a(S) from R1; )

R1 = R2 =⇒ IS_RECV_FROM(R2, accept D@P(A1, ... , An; new B1, ... , Bm) from R1; )

FIRST_RECEIVERS(G ) =
{B} if G = a(S) from A to B; G′

{A1, ... , An} if G = A calls P(A1, ... , An); G′

; otherwise

Figure 3.11: Auxiliary definitions for projection of choice and merge operator

only type of messages which can be sent. A protocol call involves sending invitations
to different roles, and receiving different invitations will also enable participants to
discern which choice B makes. Therefore, it is valid to have a combination of proto-
col calls and message exchanges initiated by B as the first interactions in the choice

branches.

In order to enforce this restriction, we define an auxiliary predicate IS_MSG_FROM(R,
G), which can be seen in Figure 3.11. We define two rules from which this predicate
can be derived, one for a protocol call and one for a labelled message exchange. The
rules specify that in order to derive the predicate, the role which is the first parame-
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(choice at B {Gi}i∈I ) ↓Env
A =

choice at B {(Gi ↓Env
A )}i∈I if A = B or A ∈ ⋂

i∈I
FIRST_RECEIVERS(Gi)⊔

i∈I
(Gi ↓Env

A ) otherwise

if ∀i ∈ I .IS_MSG_FROM(B , Gi )

Otherwise it is undefined

Figure 3.12: Projection of choice extended with invitations

ter in the predicate must also be the sender of the message in the first interaction of
the global type. Then, in the definition of the projection of choice we require that
the global type of each branch satisfies the predicate IS_MSG_FROM(B , Gi ), where B
is the role making the choice.

On top of this restriction, we still require that each first message is unique in each
branch. We consider that two protocol calls are equal only if the protocol name is
the same and the same participants are invited to carry out the same roles in the
called protocol, and two labelled messages are the same if both the labels and all the
payloads are the same.

Taking invitations into account makes it possible for a choice to not have a single
first receiver, because during the setup of a protocol call multiple invitations are
sent out in parallel. Any of the roles which receive one of these invitations could
potentially be considered as the first receiver in the choice. We therefore build
the set of possible receivers as the intersection of the first receivers in each branch.
This intersection must not be empty for the choice to be valid. As before, sending
a labelled message restricts the possible candidates to the receiver of the message.
We extract this information from the global types of each branch with the function
FIRST_RECEIVERS(G).

Moreover, because the sending of invitations is asynchronous and a role can send an
invitation to itself, it is valid to have a choice where the role making the choice is
also a potential first receiver. This can occur if each branch of the choice starts with
a protocol call in which that role also participates, but if any branch starts with a la-
belled message exchange, the first receiver can never be the role making the choice,
as it is invalid for a role to send a message to itself.

We extend the definition of projection for choice for the case where the projected
role is not the role making the choice or one of the roles receiving the first message.
The definition proposed in the nested protocols paper only applied a simple merge
over all the branches, where the continuation of the role in each of the branches
must be exactly the same. Instead, we try to merge the projections of the different
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branches using a variation of the full merge operator, which we define in Figure 3.13.

3.4.3 The Full Merge Operator

The definition of the full merge operator we present in Figure 3.13 is a variation of
the one defined in [25], which we extend to take into account both invitations and
labelled messages.

T1
⊔

T2 = T1 if T1 = T2

choice at B {RecvMsgi Ti }i∈I
⊔

choice at B {RecvMsgj T ′
j } j∈J =

choice at B {RecvMsgi Ti }i∈I \ J
⋃

{RecvMsgj T ′
j } j∈J \ I

⋃
{RecvMsgk Tk

⊔
T ′

k }k∈I ∩ J

if ∀k ∈ I ∪ J . IS_RECV_FROM(B, RecvMsgk )

T1
⊔

T2 is undefined otherwise

Figure 3.13: Definition of the full merge operator

Two local types can always be merged if they are the same type. Two choice con-
structs can be merged if the same role is making the choice, and the first interaction
in every branch is the receiving of a different message (invitation or labelled mes-
sage) from that role. We express this by ensuring that the local type of each branch
starts with a RecvMsg (defined in Section 3.3), which can either be the receiving of a
labelled message or an accept construct. Moreover, we enforce that the sender of the
first message in all branches must be the role making the choice by requiring that the
local type of every branch satisfies the predicate IS_RECV_FROM(B, RecvMsgk), where
RecvMsgk is the first interaction in each branch. We define two rules to derive this
predicate in Figure 3.11, where the predicate can only be derived if the role passed
in as a parameter is the one sending the message in the local type.

The resulting merged type in this case is a choice which combines the branches from
both types. The branches which do not overlap between the two choice constructs
can remain the same, but the branches where the first received message is common
to both of them must be recursively merged to produce a new type. To reduce the
number of cases to consider in the definition of the merge operator we implicitly use
the equivalence between a choice with a single branch and the interactions of that
branch without the choice: choice at R {T } ≡ T .
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Chapter 4

Design of Code Generation

In this chapter we describe the different factors and limitations we have had to take
into account when designing the structure of the implementation we generate for a
protocol. We describe from a high-level how the implementation works and how we
divide it across different packages.

4.1 Code Generation Approach

Our code generation approach is different from the one normally used in Scribble,
which we described in Section 2.1.5. We do not generate a communication finite
state machine (CFSM) from the local protocol of each of the roles, but rather gener-
ate code directly from the local type. The main obstacle in creating a CFSM is that
it is not possible to encode properly nested sessions using a CFSM. Implementing
nested protocols using this approach would require creating a Communicating Stack
Machine which could keep track of the stack of protocol calls so it would know which
state to return to after the protocol call had finished. Compared to this, generating
code directly from the local type is simpler, and it also enables us to design a scheme
which directly encodes the behaviour of the local type into the Go implementation.
We will describe this scheme in Chapter 6.

4.2 Implementation Design

Here we provide a high-level description of the main components which we have
used in our implementation of nested protocols. A more detailed breakdown of each
component and how we have structured them is given in Chapter 5.

When coming up with the design of the implementation of nested protocols, we
wanted the approach to be as simple and intuitive to use as possible. Because our
target language was Go, we wanted to take advantage of the in-built concurrency
primitives of the language: shared memory channels and goroutines.
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4.2.1 Implementation of Roles

In our implementation, participants execute in parallel as different goroutines, and
the dynamic participants in nested protocols are created as new goroutines every
time a protocol call is made. All communications between participants are asyn-
chronous, and they carried out over buffered channels. This means that sends will
only block once the buffer is full, and a receive will only block when the buffer is
empty. We create structs for the different kinds of messages in a protocol, and store
all the different channels needed by a role for all its message exchanges in a struct.
Each role also has a struct containing all the channels it needs to send and receive
invitations. Our invitations consist of two structs, the first one containing the chan-
nels that a participant will need to carry out the interactions of the role they will
be undertaking, and the second one containing the channels that they will need in
order to initiate and participate any protocol calls as their new role.

Each channel that a role has will only be used once, regardless of whether it is used
for sending or receiving a labelled message or an invitation. This means that a role
will have as many channels as the number of messages it sends and receives.

4.2.2 Callbacks

When generating the implementation of the role, we also generate an interface
which contains the signatures of different methods which are called from the role’s
implementation. This makes it possible for the user to define the protocol’s be-
haviour without modifying the implementation of the protocol which is automat-
ically generated. An instance of the interface is used to maintain the role’s state
throughout the protocol by calling the interface’s methods. These callbacks can
provide new information which was received, such as a received labelled message,
or enable the user to provide input needed for the execution, such as producing the
message which will be sent or deciding which branch of a choice to follow. Similar
approaches to this one using callbacks have been used in other implementations of
Scribble, such as [26].

4.2.3 Nested Protocol Calls

The implementation of a role is generated as a self-contained function, which only
contains the interactions defined in the local protocol. Calls to nested protocols in-
volve an initial setup phase which is initiated by the role which is the caller of the
protocol. During this setup, the invitations for all the roles are created: the new
channels needed by all the roles are created and aggregated to create the channel
and invitation structs for all of the roles. These structs are sent to all non-dynamic
participants through their invitation channels. Dynamic participants also receive
their channels, but they receive them directly when they are spawned as new gor-
outines which execute the functions corresponding to their role’s implementation.
Once the invitations are sent, a role participating in the protocol call simply needs to
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accept their invitation, create the callbacks environment for their new role and then
call the function which implements the behaviour of that role.

4.2.4 Returning Results from Protocols

In our implementation, we also attempt to tackle the problem of returning infor-
mation from a protocol call, which was outlined in [12] and we describe in Section
2.2.4. To solve it, we define result structs for every non-dynamic role of each pro-
tocol. The function implementing the behaviour of these roles will return its corre-
sponding result struct, which can be aggregated into the state of the caller through
a callback. The result struct can be generated from a role’s state, and it is returned
by the last callback that is called in the implementation: Done(), which signifies that
the role has finished executing all its interactions. The user can fill the structs with
whatever information it wants the role to bring out of the subsession.

Although this return value is only the partial state of each role, not a return value
for the protocol as a whole, it is a simple mechanism through which roles can retain
part of their state after executing in a nested session, and it does not introduce
any additional messages in the protocol implementation. This is already a massive
improvement over not being able to retain any information at all. However, this
solution is not fully satisfactory for the entry-point protocol, which should only be
called once to setup all the initial roles and produce a single result. Our proposal to
solve this problem is to aggregate the results of all the roles into a single state which
the user can access outside of the protocol. We create an interface which accepts
the result of each of the initial roles in the entry-point protocol. The user can then
define an implementation of the interface which aggregates all these return values in
a useful way. Nevertheless, this solution is not ideal, and we will continue to discuss
this part of the design and its limitations in Section 5.8.1.

4.2.5 Entry-Point Protocol Setup

When setting up the entry-point protocol, the process is essentially the same as the
setup for a protocol call. All the channels for the roles must be created, but instead
of receiving their channels as invitations, the roles execute as new goroutines which
receive the channels as parameters directly. In order to synchronise the ending of
the protocol, we use one of Go’s synchronization mechanisms: sync.WaitGroup.
A wait group has an internal counter which specifies the number of pending jobs
which should finish before resuming execution. The main thread waits on the wait
group until all the goroutines of the initial participants finish executing. Every time a
dynamic participant is created, the wait group’s counter must be increased to ensure
that execution does not continue before all the participants, including the dynamic
participants, have finished executing.
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4.3 Implementation Restrictions

In Chapter 3 we have described the Scribble syntax for defining nested protocols.
Using our Scribble extensions the user can define complex dependency graphs be-
tween protocols with mutual recursion. Moreover, the framework places almost no
restrictions with regards to how things should be named: nested protocol definitions
can be shadowed by definitions of nested protocols with the same name in different
scopes, and there is no fixed conventions for naming roles, protocols or message
labels.

Translating the declaration of a protocol defined in a language which gives the user
so much freedom about how things are named and structured to a programming
language with stricter restrictions like Go is a great challenge. We have tried to
come up with a design for the implementation which is simple and easy to use, but
in order to do so we have had to place a set of small restrictions on the user when
defining the protocols in order to be able to generate their implementation. These
restrictions only need to be enforced when generating the implementation of the
protocol, so the framework will only make check them before the start of the code
generation process. These checks will not be made, for instance, if the user only
wants to display the projection of a protocol.

4.3.1 Code Organisation in Go

Go programs are organised into packages, which are a collection of source files which
are compiled together. Functions, types, structs and constants defined in a source
file are visible to all the other source files in the same package[1]. This means that
generating two of these constructs with the same name in the same package will
produce an error, even if the declarations are in different source files. Moreover,
Go uses capitalisation in order to determine the visibility of the constructs declared
within a package - if they start with a capital letter then they can be accessed outside
the package, otherwise they can only be accessed within the package.

It is invalid to have cyclic import dependencies between different packages in a code-
base, but there are different strategies for solving this issue: from placing the files
which depend on one another in the same package to declaring interfaces to remove
the coupling between the implementation of different packages. In our design, we
opt for the first alternative.

It is not possible to define two packages or source files with the same name in the
same directory. By convention, both packages and files tend to have short, single-
word names which are all lowercased. For multiword names, the convention is
to use camel case rather than underscores: camelCase or CamelCase rather than
snake_case.
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4.3.2 Naming Restrictions

The lack of any enforceable naming conventions in Scribble makes it difficult come
up with a consistent naming scheme for the different parts of the implementation.
We aim to adhere to the existing naming conventions in Go wherever possible.

One of the main concerns while generating names for types and functions is to en-
sure there are no name clashes within the same package. In order to simplify the
code generation process and produce meaningful names for the variables and con-
structs, we place the following constraints on the names of the Scribble protocols,
labelled messages and role names:

• Global protocol names must be unique when they are lowercased, because
they are used to name some packages in the implementation, and they are low-
ercased for that purpose, following the Go naming convention. The uniqueness
of protocol names we currently guarantee through the renaming process de-
scribed in Section 3.3 is case sensitive, which means two protocols "P1" and
"p1" are considered to be different. This stronger uniqueness property is only
required for code generation, so it is not necessary to enforce it at an earlier
stage.

• Message labels must be unique when capitalised within any protocol. We
generate a new struct for every kind of labelled message using the message’s
label, and in order for the structs to be visible outside the package, they must be
capitalised, which makes enforcing this restriction necessary. We also require
labelled messages to have a consistent set of fields throughout their uses within
a protocol, because we only define one struct per label name. It would be
possible to generate different structs for different uses of the same label, but
this might not be as clear to the user. We have decided instead to push the
responsibility of disambiguating labelled messages to the user, but it should
not be hard for them to work around this restriction.

• Naming all of the fields in a message’s payload is optional for the user, but
if they do name the payload fields then the provided names must be unique
when capitalised. The payload field names of a labelled message are used as
the names of the message struct fields which are generated. In order for them
to be visible outside of the package where are defined they must be capitalised
in the implementation, so we must enforce this restriction to avoid generating
two fields with the same name. Unnamed fields are given an automatically
generated unique name based on their type.

• Role names within a protocol must also be unique when case is ignored. This
restriction is necessary, because we use role names to generate the names for
many different structs and functions, and it makes it easier to generate unique
names.

While these restrictions will not enforce that our implementation follows the naming
conventions in Go, they are useful to ensure that the constructs we generate are
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unique within a package. Moreover, the naming scheme we have chosen aims to
produce meaningful names which closely resemble the declarations in the Scribble
module so that the user can easily understand the generated codebase.

4.3.3 Package Organisation Restrictions

One of the factors which conditioned our design was cyclic imports. Ideally, we
would have wanted to achieve a highly-modular design with the implementation
of every protocol within its own module. After all, modularity is one of the main
features that nested protocols can provide. However, the ability to define mutually
recursive protocols in Scribble means that any two protocols can potentially depend
on one another, whether directly or indirectly. This means that their implementa-
tions will also be linked in some way, and therefore, it is not possible to define the
whole implementation of each protocol within a different package, as the dependen-
cies between protocols would cause cyclic imports.

Our design therefore tries to split up the implementation of each protocol into differ-
ent components, and keeps the source files for each of the components in different
packages wherever possible. We introduce the components that we generate and
their structure in Section 4.4.

4.4 Implementation Structure

The directory structure of the implementation of a protocol is shown in Figure 4.1.
We use the filename.go / pkgname style when referring to the names of packages and
files in our implementation. The code we generate is all contained within a single
package, named after the entry-point protocol. The different components which we
described in Section 4.1 are split across seven packages. For some of these we were
able to completely separate the logic of each protocol into a different subpackage,
each named after the protocol which they implement. In the directory tree, we add
another directory inside these packages to show this difference in their structure, like
in the case of the messages package. It was not possible to do this for all of them,
as we described in Section 4.3.3, so for the remaining packages the implementation
of each protocol is defined across one or more different source files stored directly
within the package.

Some of the packages we have defined only define structs which are needed for the
implementation, while others hold more logic. We describe the purpose of the seven
packages below and provide a high-level description of what each one contains:

• messages/protocol_pkg/: Within each of these packages we define the structs
for the different labelled messages which are exchanged in each protocol.

• channels/protocol_pkg/: Within each of these packages we define the structs
which hold all the channels that each role in the protocol will need during its
execution to communicate with the other roles.
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protocol_pkg/
messages/

protocol_pkg/
channels/

protocol_pkg/
invitations/
results/

protocol_pkg/
callbacks/
protocol/
roles/

Figure 4.1: Package structure for the implementation of a protocol

• invitations/: Each source file within this package defines the invitation structs
for all the roles of a different protocol. These invitation structs contain the
channels needed for the roles to send and receive invitations during their exe-
cution. We also define two special structs which are used to group the channels
used to send the invitations during the setup of a protocol call.

• results/protocol_pkg/: Within each of these packages we generate empty
structs which represent the return values of each of the roles of the protocol.

• callbacks/: This package stores the definitions of the callback interfaces of all
the roles of all the protocols. The files for dynamic roles also define a function
which the user should implement to return an instance of the interface for that
role. The callbacks file for a role may contain enums whose values represent
the possible alternatives for a choice the role makes.

• protocol/: This package contains the logic for the initial setup for the entry-
point protocol. It defines an interface which the user can implement to provide
an initial state for each of the roles in the protocol, as well as to aggregate the
results of each of the roles when they finish executing. It also defines several
functions to create all the channels, start the execution of all the roles and
synchronise the ending of the protocol.

• roles/: This package contains the implementation of all the roles across all
the protocols. We also define in this package the code for setting up a call to
each protocol.
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Project Implementation

In this chapter we provide a detailed breakdown of the structure of the packages we
described in Section 4.4, showing how the different parts of the implementation are
generated from the definition of the Scribble protocols, and describe how the differ-
ent elements of the implementation work together to produce the correct behaviour
of the protocol. The code generation scheme for generating a role’s implementation
from their Scribble protocol specification will be described in Chapter 6.

5.1 Naming and Notation

In Section 4.1 we described from a high-level point of view how our generated im-
plementation works. Before explaining how we generate all the different parts of
our implementation, we must first introduce some notation that we will use to name
the different components in our code generation scheme, from function names to
the names of structs, interfaces and variables:

• var_name - variable names

• "str" - string literal

• type_name - Go primitive types

• struct_name - Struct names

• struct_field - Names of struct fields

• func_name - Function names

• interface_name - Names of Go interfaces

• enum_type - Names of Go enum types

• enum_value - Names of the different values an enum type can take

47



5.1. NAMING AND NOTATION Chapter 5. Project Implementation

In our implementation, all generated file and package names are lowercased, follow-
ing the Go convention. Variable names will always start with a lower case, and the
names of all the other language constructs we define: functions, interfaces, structs,
etc. will be capitalised so that they can be visible outside the package in which they
are defined.

In our code generation definitions, whenever we introduce a new variable name we
will assume that the variable name has not been used previously in the same scope.
This simplifies the code generation, as we do not have to worry about which variable
names have been used and if the previous declaration of that variable has the type
we need.

The names we generate use different parts of the Scribble definition in order to
clearly show how each component in the implementation relates to the protocol
declaration. In order to illustrate how we have done this, we will embed certain
reserved keywords in the names we use when we define our code generation scheme.
These keywords are placeholders which represent the names that the user would
have provided when defining the protocols:

• protocol: This denotes the unique global protocol name which was generated
after the renaming phase described in Section 3.3. The only exception is when
we refer to the package protocol in our implementation, which is one of the
top-level packages we generate in our implementation. To disambiguate this
package from a package named after a user-defined protocol, we will always
refer to the latter as protocol_pkg.

• role: This denotes the name of a role participating in a protocol.

• role@protocol: This denotes the unique name corresponding to the local proto-
col which is the result of projecting the protocol protocol onto role.

In the current implementation, our naming scheme would generate the local
protocol name for the local protocol role@protocol as protocol_role. This scheme
on its own is not guaranteed to be unique even if protocol names are globally
unique and the roles participating in a protocol are also unique, so we have
to do extra work to ensure that there are no name clashes. In our definitions
we will use this notation to hide away these complexities, which should be
handled during the implementation of the code generation.

• msg: This denotes the label of a labelled message which is exchanged by two
roles in the protocol.

• payload_field: This denotes the name of field inside the payload of a labelled
message.

• payload_type: This denotes type of a field inside the payload of a labelled
message.
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• roleChannels, inviteChannels, wg and env: These are special variable names
which are used as parameters in the functions we generate to implement the
behaviour of the roles.

The names we generate for our implemetations do not follow Go’s camel case nam-
ing convention. They are generated from the names provided in the Scribble protocol
declaration, and we use underscores to separate the parts we take from the protocol
declaration from the other parts of the name instead of using mixed caps. This is the
simplest way to ensure that the names produced are readable, especially if the final
name we produce places user-defined names side by side.

5.2 Imports

In the description of our code generation scheme we will omit the import statements
which would need to be generated in each source file. However, it should be clear
from the names of the packages we access which imports would be needed. It is
important to note that import clashes may arise in the implementation. Because
some of the packages store the implementation of each protocol inside a package
with the same name, if a source file tried to import two of those packages directly
at the same time it would produce an error. For instance, a source file would not be
able to directly import both the message and the channel structs for protocol proto1,
as the desired implementations would be inside two packages named proto1.

To resolve this ambiguity when defining or code generation scheme, we introduce a
new naming convention to refer to the package where the implementation of a pro-
tocol is defined - in such cases we will write: protocol_package. For instance, we
would write proto1_messages to refer to package proto1 inside package messages.
We use a similar solution in our Go implementation, where we create import aliases
to refer to both packages with different names.

5.3 Package messages

As we mentioned in Section 4.4, this package contains the structs for the different
labelled messages which are exchanged in the different protocols of the Scribble
module, each defined within a different subpackage. The package for each protocol
contains a single source file, messages.go with the declarations of all the message
structs.

We generate one struct per message label, with every payload field in the protocol
message translating to a field inside the struct, and we only generate one struct
per message label even if the label is used multiple times in the protocol. As we
mentioned in Section 3.1.1, the user can optionally define the names for the payload
fields as long as they are unique (within the same message). When generating code,
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the framework will automatically generate unique names for any fields which the
user does not name. Therefore, every payload field in all labelled messages will
have a name which can be used to generate a field name in the message struct. For
simplicity, we currently assume that the payload types which the user gives are valid
Go primitive types, so we use them directly in the implementation as the types of
the message struct fields.

� msg (payload_field1 : payload_type1, ... , payload_fieldn : payload_typen ) � =

type msg struct {

payload_field1 payload_type1
. . .
payload_fieldn payload_typen

}

Figure 5.1: Generation of message struct from labelled message

Figure 5.1 illustrates this code generation process, showing how the different parts
of a labelled message declaration are used to build the definition of the message
struct. Although the message label name and payload fields need not be capitalised
in general, in our code generation scheme definitions we assume that they are so we
can use the message label and payload field names directly in the struct declaration.

5.4 Package channels

As we mentioned in Section 4.4, this package contains the declarations of the structs
which contain the channels needed for the roles of a protocol to send and receive
labelled messages. The structure of this package is similar to the messages package,
where each protocol has its own subpackage with a source file named channels.go
containing the channel structs for the roles of that protocol.

Every labelled message exchange in a protocol is carried out over a separate channel.
In order to generate the channel struct for a role, we go through its local types and
create a struct field for every labelled message which it sends or receives. Each of
these fields holds a channel of the message struct corresponding to the label message
in the exchange. A different channel struct is therefore generated from the local type
of each role.

In Figure 5.2 we show what the struct generated by the scheme we have described
would look like. Every field in the struct is generated from a labelled message ex-
change in the protocol’s local type. The fields inside the struct that we generate
must have unique names, but in our definition we assume that this is achieved in the
implementation.
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type role_Chan struct {

role1_msg1 chan protocol_messages.msg1
. . .
rolen_msgn chan protocol_messages.msgn

}

Figure 5.2: Channel struct for role role in protocol protocol

5.5 Package invitations

In this package we define the invitation structs for the roles of all the protocols
defined in the Scribble module. All the invitation structs for the roles of a protocol
are stored in one same file named after the protocol they belong to: protocol.go.
These files are all stored directly inside the package to avoid cyclic dependencies.

5.5.1 Invitation Structs

As we discussed in Section 4.2, in our implementation invitations consist of two
structs: the channel struct and the invitation struct for the new role that a partici-
pant is going to carry out during a protocol call. These structs contain fresh channels
that the role can use to communicate with the other participants in the subsession.
For this reason, in order to send or receive an invitation two different channels are
required.

In our design we use different channels each time we send or receive an invitation.
For every protocol call that a role initiates, we add two channels to the struct to send
the invitations for each of the participants in the call. If the protocol only partici-
pates in the protocol call, then we add two channels to receive the invitations. If the
role is the one initiating that call, but also participates in the protocol, then it will be
sending the invitation to itself over the channels created for sending the invitation,
so there is no need to create any other channels.

We illustrate the process of how we add fields to a role’s invitation struct using it’s
local type in Figure 5.3. We name the structs using the local protocol they are gen-
erated from in order to be able to clearly identify them whenever they are used, as
all the invitation structs are defined within the same package. The channel fields in-
side the struct are named differently depending on whether the channel is used for
sending or receiving invitations. In the case where a role is sending an invitation to
itself, only one set of channels is created, following the naming scheme for channels
used to send invitations.

The channel used to send the channel struct for the new role needs to refer to the
struct defined inside the channels package. On the other hand, the invitation struct
will always be defined within the invitations package itself, so it is possible to
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Env = Env ′, protocol ′ 7→ {role ′
1, ... , role ′

n; role ′′
1 , ... , role ′′

m}

( invite(role1, ... , rolen) to protocol ′; ) =⇒
type role@protocol_InviteChan struct {

. . .

Invite_role1_To_role′1@protocol′ chan protocol′_channels.role1′_Chan
Invite_rolen_To_role′n@protocol′_InviteChan chan rolen

′@protocol ′_InviteChan
. . .
Invite_rolen_To_role′n@protocol′ chan protocol′_channels.rolen′_Chan
Invite_rolen_To_role′n@protocol′_InviteChan chan rolen

′@protocol ′_InviteChan

. . .

}

if role 6= role0 then :

( accept role ′
i @protocol ′(role1, ... , rolen; new role ′′

1 , ... , role ′′
m) from role0 ; ) =⇒

type role@protocol_InviteChan struct {

. . .

role0_Invite_To_role′i@protocol′ chan protocol′_channels.role ′
i_Chan

role0_Invite_To_role′i@protocol′_InviteChan chan role ′
i@protocol ′_InviteChan

. . .

}

otherwise no new fields are added

Figure 5.3: Process for populating the invitation struct of role role in protocol protocol

access them directly without any explicit package access. It would not be possible
to move the declarations of the invitation structs of each protocol into a different
package, because it is possible for protocols to be mutually recursive, and trying to
import the invitations structs could cause cyclic imports.

5.5.2 Protocol Setup Structs

We also define two more structs in each file, which are used to send the invitations
during the setup of a protocol call. One of them will contain the channels over
which to send the role channel structs to the participants, one for each non-dynamic
participant in the protocol, and a similar struct which will contain the channels over
which to send the invitation structs to the participants. The structure of these structs
can be seen in Figure 5.4, and more details on how they are used will be given in
Section 5.9.1.
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type protocol_RoleSetupChan struct {

role1_Chan chan protocol_channels.role1_Chan
. . .
rolen_Chan chan protocol_channels.rolen_Chan

}

type protocol_InviteSetupChan struct {

role1_InviteChan chan role1@protocol_InviteChan
. . .
rolen_InviteChan chan rolen@protocol_InviteChan

}

Figure 5.4: Channel structs used during the setup of a protocol call

5.6 Package results

This package has a structure which is almost identical to the messages and channels

packages. Each protocol has its own subpackage with a source file named results.go
containing the result structs for the roles of that protocol.

We generate an empty struct for each non-dynamic role in the protocol. These structs
are returned by the function implementing the behaviour of these roles. The user
can fill the structs with fields to store whatever useful information the role can bring
out of the session. This struct is returned by the Done() callback, which signifies that
the role has finished executing. Therefore, the user can use all of the information
stored in the state of the role to build this result struct. We show what the struct
generated for a role would look like in Figure 5.5.

type role_Result struct {

}

Figure 5.5: Result struct for role role in protocol protocol

5.7 Package callbacks

In this package we define the interfaces for the callbacks environment of all the roles
in all the protocols. This environment contains the signatures of all the functions
which are called from the protocol’s implementation. By providing an implemen-
tation of the interface, the user can define the behaviour of the protocol without
modifying the functions which implement the behaviour of the different roles.
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Each interface is defined in a file named after one of the local protocols which was
generated by the projection of the protocols in the Scribble module. By doing so, we
guarantee that the file names will be unique, and also make it easy to identify where
the implementation of each role is defined. The file may also contain definitions for
enums which represent the different branches that the role can choose to follow in
the choices it makes during its execution. We illustrate what the definition of the
interface looks like in Figure 5.6.

type role@protocol_Env interface {

callback1

...

callbackn

}

Figure 5.6: Callbacks interface for role role in protocol protocol

5.7.1 Callback Generation

We generate callbacks based on the interactions that a role carries out in the nested
protocol. Like we mentioned in Section 4.2, these callbacks will enable the user to
update the state of a role based on the messages that it receives from other roles
or the results of a protocol call it takes in. They will also allow them to provide
inputs to guide the execution of the protocol, like deciding which branch to take in a
choice or building the message struct to send to another role. In order to generate
these structs we recursively traverse the local protocol of a role and add callbacks to
the interface based on the interactions it carries out.

The correspondence between the local protocol constructs and the callbacks we gen-
erated is shown if Figure 5.7. Note that the definitions we provide here are just
meant to illustrate how we generate callbacks from each interaction, they do not
express the recursive traversal of the local protocol.

When a role receives a message, we add a callback which has the received message
as an argument so that the user can update the state of the environment as needed.
On the other hand, when sending a message, we add a callback which returns mes-
sage struct which needs to be sent.

When accepting an invitation to participate in a protocol call, we generate two call-
backs, one of which is called before the protocol call is carried out and the other one
after the role has finished executing its interactions in the called protocol. The first
callback returns the initial state for the role in the called protocol, which enables the
user to use the role’s current state when creating the new initial state. The second

54



Chapter 5. Project Implementation 5.7. PACKAGE CALLBACKS

Env = Env ′, protocol ′ 7→ {role ′
1, ... , role ′

n; role ′′
1 , ... , role ′′

m}

(msg(payload) from role ′; ) =⇒
msg_From_role ′ (msg protocol_messages.msg )

(msg(payload) to role ′; ) =⇒
msg_To_role′ ( ) protocol_messages.msg

(accept role ′
i @protocol ′(role1, ... , rolen; new role ′′

1 , ... , role ′′
m) from role0 ; ) =⇒

To_role ′
i @protocol ′_Env ( ) role ′

i @protocol ′_Env

ResultFrom_role ′
i @protocol ′ (result protocol′_results.role′i_Result )

(invite(role1, ... , rolen) to protocol ′ ;
create(role role ′′

1 , ... , role role ′′
m) in protocol ′ ; ) =⇒

protocol ′_Setup ( )

(choice at role ′ { T1 } or ... or { Tn } ) =⇒
if role′ = role then:

role_Choice ( ) role@protocol_Choice

otherwise no new callbacks are generated

(end ) =⇒
if role ∉ dynamic_participants (protocol ) then :

Done ( ) protocol_results.role_Result

otherwise :

Done ( )

Figure 5.7: Process for generating callbacks from role role’s local protocol

one takes in the result returned after executing the called protocol as a parameter,
which can be used to incorporate the information returned from the protocol call
into the role’s state. The implementation of our setup for a protocol call combines
the sending of invitations to existing roles and the creation of the dynamic partici-
pants, so we produce a single callback for both local protocol constructs.

Choice Callback

When a role makes a choice, it must decide which branch of execution to follow.
Each branch starts by sending a different message to a non-empty set of roles. When
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executing the choice, we first need the user to decide which branch to follow, and
we define an enum type with one value for each branch in the choice to encode this
decision. We introduce a callback which will return one of these enum values so that
the user can decide which execution path to follow.

LABEL ( T ) =
msg if T = msg(payload) to role ; T ′

protocol if T = invite (role1, ... , rolen) to pr otocol ; T ′

undefined otherwise

(choice at role {Ti }i∈{1, ... , n } ) =⇒
type role@protocol_Choice int

const (

role@protocol_LABEL(T1) role@protocol_Choice = iota
role@protocol_LABEL(T2)
. . .
role@protocol_LABEL(Tn)

)

Figure 5.8: Scheme to generate enums for each of the branches in a choice made by
role role

The enum types and values we generate must be unique in the whole package, and
we ensure that this is the case in our implementation. We incorporate the local pro-
tocol in the names we generate to show which role is making the choice. The enum
values are named after the label of the first interaction in every branch of the choice.
We show how these enums are generated in Figure 5.8. Enums in Go are usually de-
fined as constants whose type is a type alias of int, and the use of the special iota
keyword auto-increments the value that each successive constant receives.

If the role making the choice is not the role in the local protocol, then it is not
necessary to generate any further callbacks, as the callbacks generated for the first
interactions in each branch will be enough to distinguish which branch of execution
was selected.

Done Callback

Finally, as we mentioned in Section 4.2, whenever a branch of the execution in the
protocol finishes executing, which is encoded through the end local type, a call to a
special callback will be made. This callback, which we name Done( ), is used to clean
up and finalise the state of the role. In the case of non-dynamic participants, this
callback will also return a result struct containing the useful information that the
user wants to return from the role’s final state. In this way, the useful computation
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carried out during a protocol can be returned outside of the subsession. We only add
a single Done ( ) callback to the environment, because it is always meant to be the
last callback to be called after a protocol finishes executing, no matter how many
different execution paths there are.

5.7.2 Initial State of Dynamic Participants

As we have seen, when a role accepts an invitation to a protocol call, the new en-
vironment they use while they act as that role is created from their current state.
However, for dynamic participants this is not possible, because dynamic participants
are goroutines which are created every time a protocol call is made. They don’t
have any prior state, so in order to create their initial state we generate function
declarations whose return type is the role’s environment for the user to implement.
These functions are stateless, so the user will not be able to provide any input when
generating their state. This should not be a massive obstacle in practice, as the user
could choose to explicitly build up their state through labelled message exchanges
in the protocol. We show what a function declaration would look like in Figure 5.9.

func New_role@protocol_State ( ) role@protocol_Env {

panic ("TODO : Implement")

}

Figure 5.9: Declaration of function to create the initial state of a dynamic role role

5.7.3 Package Design Restrictions

The reason why the definition of all the callback interfaces needs to be placed in the
same packages is, as we have mentioned numerous times, because protocol calls can
be mutually recursive. The callbacks we generate for setting up the environment of
the new role which a participant is going to carry out depends on the interface of
that role. If the interfaces were defined in different packages, importing them could
cause cyclic imports. We therefore chose to ensure that they are all directly visible
to one another by placing them within the same package.

5.8 Package protocol

This package contains all the logic for initialising the roles for the entry-point proto-
col as well as aggregating the results from each of the roles. Inside the package we
generate a single file named after the entry-point protocol, protocol.go, where all
the implementation is defined. Inside this file we define three things: an interface
which we use to initialise the state of the roles in the protocol and aggregate the
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results they compute, a function where we create and assign the channels used by
the roles to communicate and a set of functions for initialising each of the roles.

5.8.1 Protocol Setup Environment

As we mentioned in Section 4.2, in order to generate an implementation of the pro-
tocol which can be easily parametrised by the user, we define an interface which re-
turns the initial state of every role in the protocol. In order to initialise the protocol,
we only require the user to provide an instance of the interface with the information
needed to generate the initial states of all the roles. We also use the same interface
to aggregate the results returned by all the roles once they have finished executing.
The user will still hold a reference to the instance of the interface which was used
during the initialisation, so after aggregating the results produced by the roles in
the interface, the user will have access to the protocol’s "result". We show what the
definition of this interface would look like in Figure 5.10.

This solution is not ideal, as it is easy for the user to introduce race conditions in
the implementation when trying to aggregate the results of different roles. Because
the roles execute in parallel, they will all finish at different points in time. If a role
finishes executing shortly after another one and they both attempt to write their
result into the shared state, race conditions could occur if they both modify the same
parts of the state, unless the user used a synchronization mechanism. Nevertheless,
we consider it to be the user’s responsibility to ensure that the logic for aggregating
the state is correct.

type protocol_Env interface {

New_role1_Env () callbacks.role1@protocol_Env

...

New_rolen_Env () callbacks.rolen@protocol_Env

role1_Result(result protocol_results.role1_Result )

...

role1_Result(result protocol_results.rolen_Result )

}

Figure 5.10: Entry-point protocol setup interface declaration

5.8.2 Protocol Setup Function

The main function we generate is the one which holds all the logic to start the
execution of all the roles. The function receives an instance of the protocol setup
interface we have just described as a parameter and does the following:
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• Create all the channels required by all the roles in the protocol to send labelled
messages.

• Create all the channels that the roles will need to send and receive invitations.

• Create the channel and invitation structs for all the roles in the protocol, filling
in all the fields with the channels it created.

Every channel will be used exactly twice, once in the struct of the sender role
and once in the struct of the receiver role. The channels which are used by
roles to send invitations to themselves are the only exception, as they will only
be used once to fill the corresponding fields in the invitation struct of that role.

• Create a sync.WaitGroup variable and increment its counter by the number of
roles in the protocol.

As we described in Section 4.2, we use a wait group variable, wg, to synchronise
the ending of the protocol. All the roles will execute as different goroutines.
We use a wait group to block the main thread’s execution until all the roles
have finished executing. Whenever one of the roles finishes executing, it will
call the wg.Done() method on the wait group, decrementing its internal counter,
and the main thread’s execution will only proceed once the counter drops to
zero.

• Use the protocol setup environment to create the initial state of all the roles.

• Start the execution of each role by creating a different goroutine for each one,
providing the setup interface, the wait group, the role’s channel struct and
invitation struct and the role’s callback interface as parameters.

5.8.3 Initial Roles Setup

The functions we create to start the execution of each role in the entry-point pro-
tocol for the first time are special wrappers around the ones which implement the
behaviour of the roles. We show how they are implemented in Figure 5.11. Their
body consists of three statements: the defer statement ensures that no matter what,
once current function finishes executing, either by returning a value or raising an
exception, the function call given will be executed. In this case, we defer the exe-
cution of the call to decrement the wait group’s counter. We then call the function
implementing the role’s behaviour, passing the wait group variable, the channel and
invitation structs and the role’s state as parameters. The role’s result which is re-
turned is then aggregated into the protocol result by passing it as a parameter to the
role’s callback in the protocol environment.

Decrementing the counter cannot be done inside the function which implements the
role’s behaviour, as that function can be called as a result of a protocol call, and
the role’s execution could continue after the function returned. If the counter is
decremented too many times, it will drop to zero before all the goroutines finish
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func Start_role@protocol (protocolEnv protocol_Env, wg ∗sync.WaitGroup,
roleChannels protocol_channels.role_Chan,
inviteChannels invitations.role@protocol_InviteChan,
env callbacks.role@protocol_Env ) {

defer wg.Done ( )

result := roles.role@protocol (wg, roleChannels, inviteChannels, env)

protocolEnv.role_Result (result )
}

Figure 5.11: Role start function for role role in protocol protocol

executing. This would mean that the main thread would be able to continue exe-
cuting before all the roles had aggregated their results, so the result for the protocol
returned to the user would be incomplete/erroneous. It would even possible for the
main thread to completely finish executing before the goroutines were able to finish,
forcefully terminating them.

5.9 Package roles

This package contains the implementation for all the local protocols generated from
the Scribble module as well as the logic for setting up a call to any of the proto-
cols. The role implementations are defined in files named after the local protocols,
role@protocol.go, which contain a single function with all the logic. Similarly, the
setup for each protocol is defined in a file named protocol_setup.go, where all the
setup logic is contained within a single function.

5.9.1 Protocol Setup Functions

As we discussed in Section 5.5, our invitations consist of two structs: the channel
and the invitation struct that the roles will need to communicate with the other
roles in during the protocol call. The purpose of the setup function is to create the
channel and invitation structs that all the roles participating in the protocol call will
need, and making them available to the correct participants. This process involves
creating the channels for the dynamic participants as well, because non-dynamic
roles can communicate with dynamic ones and we have to ensure that all the roles
have access to the channels they need to communicate. The process for setting up
protocol calls is similar to the one we described for initialising the different roles for
the entry-point protocol in Section 5.8.2:

• Create the channels that the roles will need for their labelled message ex-
changes.

• Create the channels that the roles will need to send and receive invitations.
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• Create the structs for the channels and invitations of each role.

• Send the invitations to the non-dynamic participants in the protocol.

• If there are any dynamic participants in the protocol, then create a new gorou-
tine for each one to execute the function implementing their behaviour.

In order for the dynamic participants to be created they require an initial state.
Because dynamic roles are always created from scratch every time a protocol
call is made, we make them stateless. The user will be able to create the
constant initial state of a dynamic role and return it using the extra function
we generate in the callbacks package, which we described in Section 5.7.2.

Because we are creating new goroutines, we must increment the counter of
the wait group variable that keeps track of the number of roles still executing.
Otherwise, the main thread could resume before all the roles had finished
executing.

In order to send the invitations to the correct participants, the function must have
access to the channels over which the participants are expecting the invitations
to be sent. In order to do this, we use the two additional structs defined in the
invitations package that we introduced in Section 5.5: protocol_RoleSetupChan
and protocol_InviteSetupChan. These structs contain the channels over which
each role will be waiting to receive their invitations. Therefore, when sending the
channel and invitation struct to each role we simply select the channels correspond-
ing to that role in the struct. These two structs will be built by the caller of the
protocol, who will have access to all the necessary channels, and passed in as pa-
rameters to the setup function.

func protocol_SendCommChannels (wg ∗sync.WaitGroup,
roleChannels invitations.protocol_RoleSetupChan,
inviteChannels invitations.protocol_InviteSetupChan ) {

. . .

}

Figure 5.12: Declaration of protocol call setup function for protocol protocol

We mentioned in our description of the setup function how we need to increment
the wait group by the number of dynamic participants in the protocol, but we also
need to decrement the counter once a dynamic role finishes executing. We do this by
adding a defer wg.Done ( ) call at the beginning of the function of a dynamic partici-
pant, as we show in Figure 5.13. Because we need to increment and decrement wait
group’s counter in order to synchronise the termination of the protocol correctly, we
pass it in as a parameter to our function. We show the signature of a setup function
in Figure 5.12.
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By using this design, we are able to define all the logic for the protocol setup in
a single function and call it from any protocol, as opposed to having to create a
different implementation of the setup process every time a protocol call was made.

5.9.2 Role Implementation Functions

Our implementation of a role’s behaviour requires 4 different components:

• A reference to the wait group which is used to monitor whether all roles have
finished executing.

• The struct containing the channels used by the role to exchange labelled mes-
sages with other roles in the protocol.

• The struct containing the channels to send and receive invitations to nested
protocol calls.

• A variable containing the role’s state, which implements the interface role@pro
tocol_Env, which gets updated as the role interacts with the other participants.

These four variables are passed in as parameters to the function implementing the
role’s behaviour. The signature of the functions we generate can be seen in Fig-
ure 5.13. There are two differences between the functions of a dynamic and non-
dynamic role. Firstly, a dynamic role does not produce a result after it finishes
executing. The purpose of introducing return values is so that the role which par-
ticipated in a protocol call can bring any results computed outside of the protocol.
However, dynamic participants are newly created every time a protocol call is made,
so when they finish executing there will be no-one to process their return value.
For the same reason, we can carry out the defer wg.Done ( ) call inside the function,
since the role finishes executing after the function returns. This was not possible for
the entry-point function, were we had to create wrappers for initialising the roles of
the entry-point protocol for the first time, as there is no guarantee that the role will
finish executing after the function exits.

5.9.3 Package Design Restrictions

Like many of the packages we have described, the files containing the implemen-
tation for the roles in each protocol cannot be separated into different packages.
This is due to the fact that protocols can be mutually recursive, which means that
the implementation of roles in different protocols can call each other, which would
cause cyclic dependencies if the files were stored in different packages. The files
containing the setup for each protocol also need to be defined within the same pack-
age as the role implementations to avoid cyclic imports. If a protocol is recursive,
then the implementation of the role which carries out the recursive call will depend
on the setup function, but the setup function depends on the implementation of the
dynamic participants, as the dynamic participants are created within the setup func-
tion. Therefore, it would not be possible to define the implementation of the roles
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�local protocol rolei@protocol(role role1, ... , role rolen;
new role role ′

1, ... , role role ′
m) { T }� =

func rolei @protocol (wg *sync.WaitGroup,
roleChannels protocol_channels.rolei_Chan,
inviteChannels invitations.rolei@protocol_InviteChan,
env callbacks.rolei@protocol_Env ) protocol_results.rolei_Result {

�T �
}

�local protocol role ′
i@protocol(role role1, ... , role rolen;

new role role ′
1, ... , role role ′

m) { T }� =

func role ′
i @protocol (wg *sync.WaitGroup,
roleChannels protocol_channels.role′i_Chan,
inviteChannels invitations.role′i@protocol_InviteChan,
env callbacks.role′i@protocol_Env ) protocol_results.role′i_Result {

defer wg.Done ( )

�T �
}

Figure 5.13: Generation of role role’s implementation function from its local protocol

in a different package from the protocol setup logic.
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Implementation of Local Protocols

In this Chapter we will define our scheme for implementing the behaviour of a Scrib-
ble local type in Go. As we mentioned in Section 5.9, a role’s implementation uses
4 parameters: wg, roleChannels,inviteChannels and env, which are used to ac-
cess the channels used to communicate with other roles, to setup nested protocol
calls and to maintain the role’s state. A role’s implementation mainly consists of the
different interactions which it carries out with the other roles in the protocol, and
the actual protocol logic is implemented through the callbacks which are interleaved
between the interactions to update the role’s state and guide the execution of the
protocol.

Our code generation scheme recursively traverses the protocol specification for each
role in order to generate its corresponding Go implementation. In the definitions of
our code generation scheme, we assume that all the structs, functions and enums
defined in the other packages have all been generated. We also assume that the sig-
nature of the role implementation functions for all the roles across all the protocols
are known.

6.1 Message Exchanges

In order to receive a labelled message from a different role, we first assign the result
of receiving the message struct over the corresponding role channel to a variable.
This message struct is then used to update the role’s state by sending it as a param-
eter to the msg_From_role′ callback. Sending a labelled message involves a similar
process: we generate the user-defined message struct using the msg_To_role′ call-
back and send it over the corresponding message channel. The Go code we generate
can be seen in Figure 6.1.
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�msg (payload ) from role ′ ; T � =

msg := <-roleChannels.role′_msg
env.msg_From_role ′(msg )

�T �

�msg (payload ) to role ′ ; � =

msg := env.msg_To_role ′( )

roleChannels.role′_msg <- msg

�T �

Figure 6.1: Code generation scheme for message exchanges carried out by role

6.2 Protocol Calls

The code generation process for protocol calls consists of two different parts: set-
ting up a protocol call, given by invite and create, and accepting an invitation to
participate in a nested protocol, which is encoded by accept. We show the code
generation scheme for these constructs in Figure 6.2.

First, the role calls the protocol_Setup callback to update its state before the protocol
setup. Setting up a protocol call involves generating and sending all the invitations
to the participants as well as creating new goroutines for the dynamic participants.
As we described in Section 5.9, this logic is implemented in the protocol_SendComm
Channels function. Before calling it, a role must first create the two protocol setup
structs which the function takes in as parameters. The fields of the role and invita-
tion setup structs must be set to the channels that the participating roles will use to
receive their invitations, matching each participant to the role they will carry out.
As we described in Section 5.5, these invitation channels will be stored in the role’s
inviteChannels struct. Once these structs are created, the role can call the setup
function for that protocol.

The code generation for the accept construct not only generates the code for ac-
cepting the invitation and participating in the protocol, but also collects the results
from the protocol call and updates the role state with it. The definition we show
assumes that the role which initiates the protocol call is not the same as the cur-
rent role. As we explained in Section 5.5 when a role accepts an invitation it sends
to itself, the channels used are the same ones which were used to send the invitation.

The role must first receive the invitation that the caller will have sent in order to
have the channels it will need for communicating with the other participants. After
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the invitation has been received, the role needs to generate the environment which
will maintain its state during the protocol call. As we described in Section 5.7, the
To_role ′

i@protocol′_Env callback will return its new state. The user can decide how
this state is generated, possibly using information from the role’s current state to
create the new one. Once the role has received the message channels, invitation
channels and its new environment, it can participate in the protocol call as the new
role by calling that role’s implementation function. Because the role it will carry out
in the protocol call cannot be a dynamic participant, that role’s implementation will
return a result. This result can then be used to update the role’s current state by
passing it as a parameter to the ResultFrom_role ′

i @protocol′ callback.

Env = Env ′, protocol ′ 7→ {role ′
1, ... , role ′

n; role ′′
1 , ... , role ′′

m}

�invite(role1, ... , rolen) to protocol ′ ;
create(role role ′′

1 , ... , role role ′′
m) in protocol ′ ; T � =

env.protocol_Setup ( )

protocol′_rolechan := invitations.protocol′_RoleSetupChan {

role′1_Chan : inviteChannels.Invite_role1_To_role′1@protocol′
. . .
role′n_Chan : inviteChannels.Invite_rolen_To_role′n@protocol′

}

protocol′_invitechan := invitations.protocol′_RoleSetupChan {

role′1_InviteChan : inviteChannels.Invite_role1_To_role′1@protocol′_InviteChan
. . .
role′n_InviteChan : inviteChannels.Invite_rolen_To_role′n@protocol′_InviteChan

}

protocol_SendCommChannels (wg, protocol′_rolechan, ,protocol′_invitechan )

�T �

�accept role ′
i @protocol ′(role1, ... , rolen; new role ′′

1 , ... , role ′′
m) from role0 ; T � =

role ′
i@protocol_chan := <-inviteChannels.role0_Invite_To_role′i@protocol ′

role ′
i@protocol_invitechan :=

<-inviteChannels.role0_Invite_To_role′i@protocol ′_InviteChan

role ′
i@protocol_env := env.To_role ′

i @protocol ′_Env ( )

role ′
i@protocol_result := role′i@protocol (wg,

role′i@protocol_chan,

role ′
i@protocol_inviteChan,

role ′
i@protocol_env )

env.ResultFrom_role ′
i @protocol ′(role ′

i@protocol_result )

�T �

Figure 6.2: Code generation scheme setting up a protocol call and accepting invitations
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6.3 Choice

The implementation of choice that we generate changes based on whether the role
we are implementing is making the choice or not.

If the role is making the choice, then in order for the implementation to know which
branch of execution to follow we need input from the user. For this purpose we use
the role_Choice callback and the role@protocol_Choice enum we defined in Section
5.7. The enum value returned by the user encodes which branch has been chosen.
In our implementation, this choice operation is carried out using a switch statement,
which will match the enum value and execute the implementation which is gener-
ated for that branch of the protocol. We show the definition of this code generation
scheme in Figure 6.3. We use the same LABEL( ) function we defined in Section 5.7
to refer to the choice enum values.

�choice at role {Ti }i∈{1 ...n })� =

role_choice := env.Role_Choice ( )

switch role_Choice {

case callbacks.role@protocol_LABEL(T1) :

�T1 �
. . .

case callbacks.role@protocol_LABEL(Tn) :

�Tn �
default :

panic ("InvalidChoice")

}

Figure 6.3: Code generation scheme for a choice made by role

On the other hand, if the role is not making the choice, the role will only be able to
determine which branch to execute after receiving the first message. As we defined
in Section 3.4.2, the first interaction in every branch of a well-formed choice will
always be either the accepting an invitation or the receiving a labelled message.

Go’s select statement can be used to make a goroutine wait on multiple communica-
tion operations in parallel[4], and execute the body of the first case which becomes
available. If multiple statements are available at the same time, a random one will
be chosen between them. Our implementation uses a select statement where every
case contains the implementation of one of the choice branches. As we showed in
Sections 6.1 and 6.2, the first statement in the implementation of both accepting an
invitation and receiving a labelled message is a receive on one of the role’s chan-
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nels. This first receive statement from the implementation of every branch is used
in each case statement to determine which execution path to follow once a message
is received on any of the channels. This code generation scheme is shown in Figure
6.4.

GENERATE_CASE ( Impl ) =
case label_var := <-ch : if Impl = [label_var := <-ch; Impl ′]

Impl ′

undefined otherwise

�choice at role ′ {Ti }i∈{1 ...n })� =

select {

GENERATE_CASE(�T1 � )

. . .

GENERATE_CASE(�Tn � )

}

Figure 6.4: Code generation scheme for a choice which is made by a different role

6.4 Recursion

Unfortunately, the code generation scheme we have defined does not support the
rec construct in Scribble protocols. The implementation we generate relies on the
fact that all the channels that a role needs for communication will be created before
the protocol starts and stored in the roleChannels and inviteChannels structs, and
that a role will use every channel for a single message exchange within the protocol.
This becomes an issue when trying to implement rec, because it is not possible to
know how many channels will be needed to execute a protocol, as it could potentially
unfold infinitely.

6.4.1 Choice and Recursion

Our initial approach for generating the implementation of recursion permitted reusing
channels between different recursion unfoldings, but this lead to race conditions
when recursion was combined with choice. We showcase a simple example where
this issue would arise in Figure 6.5. This protocol models a loop where a sender
keeps sending values to a receiver until it decides to stop, sending a message to end
the communication.
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Let us assume that the sender sends one message before the termination message,
and that the same two channels are used for the choice both times. Because chan-
nels are asynchronous, after sending the first message the sender would be able to
continue with the second choice without waiting for the receiver to receive it. It is
not guaranteed that the first message will have been received by the time the sender
sends the termination message. This means, that it is possible for the receiver to
be able to choose to receive the termination message before the first message which
was sent, because the channels used in both choices are the same and a select
statement will choose one of the available options at random.

In this example, the issue could be resolved by making the channels synchronous,
which would force the sender to wait for the receiver to receive the first message
before sending the termination message, but this solution would not be enough for
our implementation. We have highlighted the problem with a protocol which car-
ries out labelled message exchanges, but the same issue would arise if the choice
involved calling two different protocols. If the role making the choice did not par-
ticipate in the call, it could send out the invitations one after another, leading to the
same situation. Moreover, in the case of invitations, we require that they are sent
over asynchronous channels because a role needs to be able to send an invitation
to itself.

For this reason, making the channels synchronous is not enough to solve our issue,
and because it is not possible to create a struct with an infinite number of channel
fields, we have concluded that it is impossible to directly encode recursion with our
current design.

1

2 global protocol SendLoop(role Sender, role Recv) {
3 rec LOOP {
4 choice at Sender {
5 Msg() from Sender to Recv;
6 continue LOOP;
7 } or {
8 End() from Sender to Recv;
9 }

10 }
11 }

Figure 6.5: Protocol combining rec and choice

6.4.2 Recursion as Nested Protocols

Even though we cannot directly generate code for the rec construct, it is still possi-
ble to achieve almost the same behaviour by modifying the protocol definition.
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The main problem with our previous approach was that we were trying to create the
channels for all the recursion unfoldings at the beginning, which was not possible.
Instead, if we dynamically create a new set of channels for each unfolding of the
protocols and share them across the roles which participate in the body of the recur-
sion we could achieve the same result.

This is exactly what we are already doing for setting up protocol calls to nested pro-
tocols, where we create the channels each role will use for communicating with the
other participants. Therefore, by extracting the body of a rec construct into a new
nested protocol and replacing the occurrences of recursion variables in the protocol’s
specification with calls to the new nested protocol we can achieve almost the same
behaviour as before. The main difference is that this approach introduces a point of
synchronization for all the roles at the beginning of each execution of the recursion
which the rec construct does not have, but this should not affect the expressiveness
of our implementation.

Following this approach, we had to introduce an extra step in the pipeline before
the projection, where we recursively traverse the protocols defined in the Scribble
module and create new nested protocols for each recursion block we encounter. This
additional step can be seen in Figure 1.1.

The signature of each of the new protocols we introduce must include only the roles
from the original protocol which participate in the body of the recursion block, and
their body is the same as the body of the recursion block, where every instance of
continue t is replaced by a call to the new nested protocol.

6.5 End

The end local type signifies that the protocol has finished, and the code we generate
shares the same semantics. To provide the user with an opportunity to perform
whatever cleanup on the role’s state, we first call the Done callback. As we described
in Section 5.7, in the case of dynamic participants, this callback will not return
anything, whereas for non-dynamic participants it will return a user-generated result
for the role’s execution of the protocol. After calling the callback, we return from the
function, returning the role’s result for non-dynamic participants. This process can
be seen in Figure 6.6.

70



Chapter 6. Implementation of Local Protocols 6.5. END

�end� =
env.Done ( ) if role ∈ dynamic_participants(protocol )

return

return env.Done ( ) otherwise

Figure 6.6: Code generation scheme for end inside protocol role@protocol
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Evaluation

The main objective of our project is to develop the first practical implementation of
the multiparty session types (MPST) theory of nested protocols. Our work aims to
increase the expressiveness of Scribble[29], an MPST-based framework, to be able to
model a large subset of real-world message passing APIs which could not be specified
with the current theory. We will present different approaches which can be used to
express common distributed computation patterns in our extended framework, and
evaluate the strengths and limitations of our work through case studies which are
implemented using these patterns.

7.1 Distributed Computation Patterns

The major limitation for existing MPST-based frameworks is that they cannot specify
protocols where the number of participants is not known at the beginning of the
session[9]. Many communication protocols used in practice do not have this infor-
mation available statically. For instance, in a routing protocol, when a client wants to
send a message to a different host over the network it won’t necessarily know how
many intermediate hops the message will have to go through before reaching the
intended receiver. These kinds of protocols cannot be expressed by existing MPST
frameworks, but nested protocols are able to do it, as new participants can be dy-
namically introduced through nested protocol calls.

To demonstrate the increased expressiveness provided by nested protocols, we define
three common communication patterns which are used in distributed computation
using nested protocols.

7.1.1 Ring Protocol

We show how nested protocols can be used to define a dynamic ring protocol, where
the number of participants of the ring can grow as the protocol executes. In this
setting, participants can only communicate with participants which are ‘adjacent’ to
them in the ring. A role initiates the communication by sending a message to the
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next participant, which gets forwarded all around the ring until it comes back to the
first role.

1

2 nested protocol Forward(role S, role E; new role RingNode) {
3 msg(msg:string) from S to RingNode;
4 choice at RingNode {
5 RingNode calls Forward(RingNode, E);
6 } or {
7 msg(msg:string) from RingNode to E;
8 }
9 }

10

11 global protocol Ring(role Start, role End) {
12 choice at Start {
13 Start calls Forward(Start, End);
14 msg(msg:string) from End to Start;
15 } or {
16 msg(msg:string) from Start to End;
17 msg(msg:string) from End to Start;
18 }
19 }

Figure 7.1: Dynamic Ring Protocol

This behaviour can be encoded with nested protocols by using two protocols: Ring
and Forward, as shown in Figure 7.1. Protocol Ring introduces the first and last roles
in the ring, where role Start will send the first message around the ring, and role
End will forward the message back to Start. If the ring only has two participants,
they can just send the message to each other, but for larger rings, new participants
must be introduced.

Protocol Forward defines the behaviour for increasing the ring size, which involves
forwarding a message from a start role S to a new intermediate role RingNode.
RingNode can then decide whether to close the ring by forwarding the message back
to role E, which represents the last node in the ring, or to introduce a new inter-
mediate node by calling the Forward protocol again. Once the last role receives the
message, all that is left is for the End role to forward it back to role Start in the Ring
protocol.

7.1.2 Pipeline Protocol

Another common pattern used to carry out tasks in a distributed system is a pipeline,
which is essentially a ring with the last link missing. A task is forwarded through a
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sequence of roles, each connected only to the next role in the pipeline, ending with
the last role receiving the message/result.

1

2 nested protocol Forward(role S, role E; new role Node) {
3 msg(msg:string) from S to Node;
4 choice at Node {
5 Node calls Forward(Node, E);
6 } or {
7 msg(msg:string) from Node to E;
8 }
9 }

10

11 global protocol Pipeline(role Start, role End) {
12 choice at Start {
13 Start calls Forward(Start, End);
14 } or {
15 msg(msg:string) from Start to End;
16 }
17 }

Figure 7.2: Dynamic Pipeline Protocol

Our approach for defining this protocol, shown in Figure 7.2, is the same as the one
we used to define a dynamic ring in Section 7.1.1. The protocol for forwarding the
message to a new intermediate node remains the same as before, but we remove the
last interaction to send the message back to the initial role in the Pipeline protocol.

7.1.3 Fork-Join Protocol

Distributed computation tasks often adopt a divide and conquer approach, where a
large task is divided into smaller ones which are executed in parallel before aggre-
gating all of the results from the subtasks together. This approach can be encoded in
the fork-join model, which involves two stages: the fork and the join phase. During
the fork phase, the main thread assigns each subtask to a different thread of execu-
tion without waiting for the result, and in the join phase the main thread waits to
receive the results of all the subtasks which were spawned in the initial phase.

Nested protocols can be used to model this approach, even when the number of
tasks is only known at runtime. We define two protocols in Figure 7.3 to do this.
Both protocols involve two roles, one which is in charge of assigning the tasks, and
a second role which carries out the task and returns the result.

In the entry-point protocol, ForkJoin, role Master can decide whether the subtask
can be carried out by role Worker alone or if it needs to be split further amongst
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1

2 nested protocol Fork(role M; new role W) {
3 choice at Master {
4 Task() from M to W;
5 M calls Fork(M);
6 Result() from W to M;
7 } or {
8 End() from M to W;
9 }

10 }
11

12 global protocol ForkJoin(role Master, role Worker) {
13 choice at Master {
14 Task() from Master to Worker;
15 Master calls Fork(Master);
16 Result() from Worker to Master;
17 } or {
18 SingleTask() from Master to Worker;
19 Result() from Worker to Master;
20 }
21 }

Figure 7.3: Dynamic Fork-Join Protocol

other participants. Master can delegate another subtask to a new role by calling
the Fork protocol, where the master role M can choose to assign a new task to the
role or send it a message to indicate that the fork stage of the protocol has finished.
Once a call to the Fork protocol has finished, the master role can receive the result
computed by the worker role.

The key insight for implementing the Fork-Join model is that nested protocols pro-
duce a stack of states every time a protocol call is made, much like the function call
stack of a computer program. After the protocol call finishes, the roles resume their
execution from the state they were in before the call. Our protocol specification takes
advantage of this to achieve the execution of each subtask in parallel. After assigning
a task to a worker, the master proceeds to assign the next one by making a recursive
call to the Fork protocol without waiting for a result. This enables the worker role
to compute its result while the remaining subtasks are being assigned. Once all the
tasks are assigned, the results are aggregated in reverse order by traversing the pro-
tocol call stack until a single final result is produced.

Furthermore, this approach can be extended to define protocols which implement
Fork-Joins with various levels of recursion. In such a case, the subtasks assigned
to the workers may still be too complex for them to produce a result alone, so the
workers can enact the Master role in a new Fork protocol call in order to further
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split the subtask amongst other participants. This will enable them to aggregate the
results of the subtasks before returning the result to the master role which assigned
the task to them in the first place.

We have therefore described how we can model a parallel divide and conquer paradigm
using nested protocols, which can be used to define protocols that carry out arbitrar-
ily large tasks by breaking them down into smaller independent jobs that are carried
out in parallel.

7.2 Case Studies

Using the patterns that we have described, we will demonstrate how nested proto-
cols can be used to define protocols which could not be expressed with the previous
theory.

7.2.1 Fibonacci

Calculating the nth Fibonacci number is a problem where the computation of the
each successive number is the result of adding the previous two numbers in the
sequence. This procedure could already be modeled with the existing theory[9], but
we use it to showcase how we can apply the ring protocol design to practical use
case.

1

2 nested protocol Fib(role Res, role F1, role F2; new role F3) {
3 Fib1(ubound:int, idx:int, val:int) from F1 to F3;
4 Fib2(idx:int, val:int) from F2 to F3;
5 choice at F3 {
6 F3 calls Fib(Res, F2, F3);
7 } or {
8 Result(fib:int) from F3 to Res;
9 End() from F3 to F2;

10 }
11 }
12

13 global protocol Fibonacci(role Start, role F1, role F2) {
14 StartFib1(n:int, val:int) from Start to F1;
15 StartFib2(n:int, val:int) from Start to F2;
16 Start calls Fib(Start, F1, F2);
17 }

Figure 7.4: Nth Fibonacci Number Protocol

The protocol definition in Figure 7.4 shows our proposed specification for the Fi-
bonacci protocol. Our approach follows a variant of the ring design where each role
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can communicate with the two following roles in the ring. When protocol Fibonacci
starts, role Start sends the first two numbers in the sequence to F1 and F2 before
making the first call to the Fib protocol. This protocol introduces a new participant
which will calculate the next Fibonacci number after receiving the previous numbers
from roles F1 and F2. It will then decide whether to send it back as the final result
to role Res or to make a recursive protocol call to calculate the next number in the
sequence. In our implementation, we send the indices of the Fibonacci numbers as
well as their values in our messages, and we also send the index of the Fibonacci
number we want to compute so that we can identify when the protocol must termi-
nate.

The formulation of the Fibonacci protocol we have presented can be easily modified
in order to express the calculation of the infinite Fibonacci sequence, not just the
nth term, something which the previous theory could not express. In fact, doing
so actually simplifies the protocol, as we no longer have to keep track of the upper
bound where we want to stop or how many numbers we have calculated. All that
is required is to replace the choice in Fib with a Result message from F3 to Res
followed by a recursive call to Fib.

7.2.2 Fannkuch-redux

The Fannkuch-redux protocol was extracted from an implementation of the Fannkuch-
redux benchmark presented in [15]. The task consists on finding out the maximum
number of flips that need to be carried out on any permutation of the numbers from
1 to n. Each flip reverses the order of the first k numbers in the permutation, where
k is the first number in the permutation. When the number 1 arrives at the first
position, the process finishes, as any further flipping operations will not cause any
changes.

This is a computationally-expensive task, as it requires calculating the number of
flips for every one of the n! permutations of length n. Moreover, the conjecture is
that the maximum count is approximated by nlog(n), which means that each indi-
vidual task by itself is not trivial.

The implementation we have adapted carries out the computation by dividing all the
different permutations into different groups, and the number of flips needed for the
permutations in each group are calculated by a different goroutine, which sends the
maximum number of flips found back to the first role, which aggregates the results.
The main thread only assigns the first task to a worker, and then the worker will
decide whether it needs to split any of the remaining permutations with a different
role or not.

We have implemented this behaviour in Figure 7.5. This protocol specification fol-
lows the same principle as a Fork-Join protocol, where a single role triggers the start
of the computation and aggregates the results produced by all the roles, but in this
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1 nested protocol FannkuchRecursive(role Source, role Worker; new
role NewWorker) {

2 Task(IdxMin:int, Chunksz:int, Fact:[]int, N:int) from Worker
to NewWorker;

3 choice at NewWorker {
4 NewWorker calls FannkuchRecursive(Source, NewWorker);
5 Result(MaxFlips:int, Checksum:int) from NewWorker to Source;
6 } or {
7 Result(MaxFlips:int, Checksum:int) from NewWorker to Source;
8 }
9 }

10

11 global protocol Fannkuch(role Main, role Worker) {
12 Task(IdxMin:int, Chunksz:int, Fact:[]int, N:int) from Main to

Worker;
13 choice at Worker {
14 Worker calls FannkuchRecursive(Main, Worker);
15 Result(MaxFlips:int, Checksum:int) from Worker to Main;
16 } or {
17 Result(MaxFlips:int, Checksum:int) from Worker to Main;
18 }
19 }

Figure 7.5: Fannkuch-redux Protocol

case the first role only assigns a task to one worker, and it is the workers themselves
who introduce new participants into the protocol and assign them their tasks.

It would be possible produce a specification for this program without using nested
protocols as long as you first calculate how many participants will be created in the
process. Even so, by using nested protocols we can define this behaviour in a less
restrictive manner which is closer to the program’s original implementation.

7.2.3 Bounded Prime Sieve

The aim of a bounded prime sieve program is to produce all the primes from 2 until
a specified upper bound, which can be done by incrementally filtering out all the
numbers which are multiples of the primes you have found already. If a number
remains after carrying out the sieve with all the numbers less than itself, then that
number is a prime. We can express this behaviour using nested protocols by using a
similar approach to the one used in Section 7.2.2 to implement the Fannkuch-redux
protocol.

The implementation of the bounded prime sieve protocol is split across two proto-
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1 nested protocol Sieve(role M, role W1; new role W2) {
2 nested protocol SendNums(role S, role R) {
3 rec SEND {
4 choice at S {
5 Num(n:int) from S to R;
6 continue SEND;
7 } or {
8 End() from S to R;
9 }

10 }
11 }
12

13 FilterPrime(int) from W1 to W2;
14 W1 calls SendNums(W1, W2);
15

16 choice at W2 {
17 Prime(n:int) from W2 to M;
18 W2 calls Sieve(M, W2);
19 } or {
20 Finish() from W2 to M;
21 }
22 }
23

24 global protocol PrimeSieve(role Master, role Worker) {
25 FirstPrime(prime:int) from Master to Worker;
26 UBound(n:int) from Master to Worker;
27 choice at Worker {
28 Prime(n:int) from Worker to Master;
29 Worker calls Sieve(Master, Worker);
30 } or {
31 Finish() from Worker to Master;
32 }
33 }

Figure 7.6: Bounded Prime Sieve Protocol

cols, as shown in Figure 7.6. The entry-point protocol involves only two roles: Main
and Worker. Main is the role which starts the sieve, sending the first prime, 2, and
the upper bound of the sieve to Worker. With this information, Worker can filter out
the non-prime numbers between 2 and n, and either communicate to Main that there
are no numbers left or send the new prime to Main and start the sieve process with
the next prime and the remaining numbers.

Setting up a successive sieve is always done by calling the Sieve protocol, which in-
volves three roles: M, W1 and a new participant, W2. M’s only purpose is to receive the
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primes generated in the sieve, while W1 sends the new participant the information
needed to perform the next sieve: the prime candidates which have not been filtered
out yet and the prime number to use during the sieve. These possible primes are
sent through the SendNums protocol, where Sender repeatedly sends messages to a
receiver, Recv, until it decides it will send no more values. If the sieve discovers a
new prime, W2 will send it to M and start another sieve, otherwise the sieve is finished.

It would not be possible to express a bounded prime sieve without nested protocols,
as that would require knowing how many primes are in the range that you want to
calculate, and that can only be found by carrying out the sieve.

7.3 Performance

We evaluate the run-time performance of our framework using the case studies we
have described. We measured the execution times on a machine with an Intel i7-
6700 processor and 16GB RAM, running Debian 10 and Go version go1.13.5.

We defined our own functions for benchmarking our protocol implementations. We
compared the execution times of the implementations generated for the three case
studies we have described against a hand-written implementation without nested
protocols to evaluate the overheads introduced by our implementation. Each of the
case studies was run for one thousand iterations before taking the mean execution
time. We ran the benchmarks using different parameters which determined which
Fibonacci number to calculate, which value to pass in to the Fannkuch-redux proto-
col and the upper bound for the prime sieve.

We measure the execution time in microseconds, and we compute the ratio tgo
tapi

be-
tween the execution time of the hand-written and our generated implementations.
We show plots of our results in Figure 7.7. Each graph shows the relative ratio
between the implementations against the baseline of 1, which represents the ideal
behaviour where the generated code is as fast as the hand-written implementation.

The graphs show that our generated implementation is significantly slower than the
one which was handwritten for the Fibonacci and Prime sieve protocols. The Fi-
bonacci implementation is about five times slower, whereas for the prime sieve pro-
tocol the performance becomes twenty times slower. On the other hand, even though
the performance of the generated Fannkuch implementation is initially much slower,
the difference becomes negligible as the parameter value increases.

These results clearly indicate that our implementation of nested protocol calls incurs
a high performance penalty for communication-oriented protocols, where the roles
spend most of their time communicating with each other and participating in other
nested protocols. Our code generation approach is not optimised for this kind of
tasks, as we only focused on ensuring the correctness of the implementation. Our
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Figure 7.7: Performance comparison: Scribble-Go vs. Go base case implementations

use of channels is highly inefficient because we only use each channel in one inter-
action, which will cause higher memory allocation overheads, especially when a lot
of nested protocol calls are made.

In our hand-written implementation for the prime sieve protocol, the logic for send-
ing the prime candidates to the next role reused the channels used for sending the
numbers, whereas in our generated code every number would be sent over a differ-
ent channel in a different protocol call. Therefore, to send a single prime candidate
we would first have to allocate the channels for the protocol call and send them as
invitations, which causes massive allocation and communication overheads, explain-
ing the difference in performance.

The performance drop in the Fibonacci protocol is not as pronounced as the one in
the prime sieve protocol, as there are no recursive protocols which cause a lot of
additional protocol calls to be made. We still expect a worse performance due to
the additional memory allocations for channels and structs, the increased number of
message exchanges for invitations and other factors in our code generation scheme,
such as passing structs by value instead of by reference to functions, so this perfor-
mance difference is within reason for a protocol which is mainly communication-
oriented.

By contrast, the implementation of the different roles in the Fannkuch-redux pro-

81



7.4. EXPRESSIVENESS AND LIMITATIONS Chapter 7. Evaluation

tocol is much more computationally intensive than the other two protocols, and its
complexity grows exponentially as the parameter increases. After a certain point,
the overheads caused by the implementation of the role itself become more signifi-
cant than the communication overheads introduced by the protocol implementation.
This could explain why for parameter values ≥ 9 the performance difference almost
disappears.

7.4 Expressiveness and Limitations

We have demonstrated the increased expressiveness of our extension to the Scribble
framework by describing how nested protocols can be used to specify a wide range
of protocols which employ different communication patterns. Nevertheless, there
are still limitations to which message-passing APIs can be expressed using nested
protocols.

Even though with nested protocols it becomes possible to dynamically introduce
new participants into a session, the number of a participants in a session is finite
and cannot change. Nested protocols can therefore express processes which can
have an arbitrary sequence of steps as long as every step of the computation only
requires a fixed number of participants.

An example which nested protocols cannot express is the unbounded prime sieve.
This process involves building an infinite chain of participants which incrementally
sieve the natural numbers to find the prime numbers much like the bounded prime
sieve we described in Section 7.2.3. However, here the process does not stop at
an upper bound, it continues forever. A sieve chain between roles which grows in-
finitely as new primes are discovered cannot be expressed with the current theory
of nested protocols for the reasons we have outlined above. This shows that even
though nested protocols can be used to describe a large number of message-passing
APIs, there are still behaviours which cannot be expressed.

When comparing the expressiveness of our extended framework against a previous
implementation[9], we can see that our extension allows us to specify many more
protocols. In Table 7.1 we enumerate the protocols that we have already discussed,
and whether they can be represented using both frameworks. Both frameworks are
unable to express the infinite pipeline of roles in the unbounded prime sieve proto-
col, but the previous framework is only able to specify two of the remaining protocols
which our extended framework can express. The nested protocols theory allows us
to describe processes where the number of participants is not known at the start of a
session, which overcomes a major obstacle towards describing real-world message-
passing APIs that the previous framework faced.

Even though our framework can generate correct implementations for a large num-
ber of protocols across many practical applications, our analysis highlights the fact
that the performance of our implementations would not be suitable for many of
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Protocol Nested Protocols Previous theory[9]

Dynamic Ring (§7.1.1) 3 7

Dynamic Pipeline (§7.1.2) 3 7

Dynamic Fork-Join (§7.1.3) 3 7

Recursive Fork-Join (§7.1.3) 3 7

Fibonacci [9](§7.2.1) 3 3

Unbounded Fibonacci sequence (§7.2.1) 3 7

Fannkuch-redux [15](§7.2.2) 3 3

Bounded Prime Sieve (§7.2.3) 3 7

Unbounded Prime Sieve [21](§7.2.3) 7 7

Table 7.1: Comparison of the protocols which can be expressed with/without nested
protocols

these use cases. The way we have implemented nested protocol calls, which are
the essence of the theory we are implementing, is not optimised, causing protocols
that carry out a lot of nested protocol calls to suffer a large performance penalty.
Nevertheless, this is the first version we have implemented, so there are lot of areas
which can be refined in order to reduce the overhead caused by nested protocol calls.

In the future, the framework could potentially be used in many practical applica-
tions, but in its current state the main tasks where it could be useful are tasks which
prioritize strong correctness guarantees over efficiency, and in cases where the tasks
carried out by the protocols are more computationally expensive. In such cases, the
overhead introduced by our design will be less significant compared to the overall
execution time of the protocol implementation.
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Conclusion

8.1 Contributions

The aim of our project was to create a framework to statically verify the speci-
fication of nested protocols. We have extended the Scribble protocol description
language[29] with the multiparty session types theory (MPST) of nested protocols
presented in [12]. We have also incorporated the full merge operator into the defini-
tion of projection presented in the theory to increase the number of protocols which
can be expressed. The Scribble toolchain can now check that a protocol specification
using nested protocols provided by the user is valid and obtain the projections for
the different roles participating in the protocols.

We develop the first practical application of the nested protocols theory. In Chapter
6, we define a scheme to translate the specification of a role’s behaviour, given by
the projection Scribble generates, into an API implementation for the role in Go.
The APIs generated with our approach ensure that a role will never perform any
illegal I/O actions. Our implementation targets Go, one of the most well-established
programming languages for developing distributed systems in industry[2], and we
leverage Go’s concurrency primitives for local concurrency: goroutines and channels,
which had not been treated before in any MPST frameworks for Go.

Our project has focused on implementing the core parts of the nested protocols
theory presented in [12]: defining nested protocols within other protocols, calling
nested protocols within a parent protocol and making it possible for protocols to
have dynamic participants that are only brought in when a protocol is called. These
extensions enable us to model many real-world message-passing APIs where the
number of participants is not known at the beginning of the session, which is some-
thing that could not be done with previous MPST-based frameworks.

We have come up with a possible approach to solve the problem of returning a result
from a protocol, as the original theory does not define a way to bringing out the
results of the computation carried out during a protocol out of the session. This fea-
ture is vital for the usefulness of the implementation, because otherwise the results
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of the computation would be lost once a protocol had finished executing.

In Chapter 7 we discuss how our extensions have increased the expressiveness of the
Scribble language, demonstrating different patterns which can be used to express
concurrent computation using nested protocols and showcasing how these patterns
can be applied to implement different examples. We also compare the performance
of the implementations we generate to ones which have been implemented manu-
ally in order to show which kinds of protocols are most suited to be implemented
with our framework.

Our extensions to the Scribble framework have been implemented on top of an ex-
isting implementation of Scribble: nuscr1. At the time this has been written, our
contributions have not been merged into the official implementation, but they are
publicly available in a fork of the repository2 under the same GNU General Public
License as the original repository.

Overall, our project shows the potential of using nested protocols to describe concur-
rent computation, and our approach lays a solid foundation for further development
in both the theory and practical applications of nested protocols.

8.2 Future Work

Our project has opened up many different interesting avenues for further develop-
ment in the theory and implementation of nested protocols. We mention a few of
the ideas which we would like to highlight:

• Proving the correctness of our implementation: From a theoretical stand-
point, we have not offered a formal proof of the correctness of our implemen-
tation. We have just given justifications as to why we believe our approach is
correct. We would like to formalise our work to show the correspondence be-
tween our approach and the MPST theory, in the same way that the correctness
of Scribble is formalised in [25].

• Guaranteeing deadlock freedom: Like the original nested protocol theory
presented in [12], our implementation cannot guarantee deadlock freedom and
the termination of a protocol which calls other nested protocols. The reason
for this is that when a protocol call is made, it is not always possible to identify
whether the protocol call will terminate, or if some/all the participants in the
call will be stuck in a recursive loop. Therefore, any interactions which hap-
pen after the protocol call may be stuck if one or more of the roles involved
were participants in the protocol call which are stuck in an infinite loop. A
great extension to this project could involve developing both the theory and
implementation to explore what stronger termination properties can proven
for nested protocols.

1https://github.com/nuscr/nuscr
2https://github.com/becharrens/nuscr

85

https://github.com/nuscr/nuscr
https://github.com/becharrens/nuscr


8.2. FUTURE WORK Chapter 8. Conclusion

• Implementing nested protocols as Communication Finite State Machines
(CFSM): As we described in Section 2.1.5, the standard approach for gen-
erating role APIs in Scribble is to first create a CFSM which is then used to
generate the implementation. However, the current CFSM theory is not able to
express nested protocol calls, which is why we generate code directly from the
protocol specification for a role that is produced by the Scribble toolchain. It
would be interesting to extend the theory of CFSMs in order to overcome this
limitation and find out how a CFSM-based implementation of nested protocols
compares with our current approach.

• Implementing nested protocols in a distributed setting: The current imple-
mentation of nested protocols is only designed for a local system, where all the
computation is carried out in goroutines executing on a single machine. Using
this approach, we have been able to take advantage of Go’s concurrency prim-
itives in our initial design, but moving forward, in order for nested protocols
to be used in real-world applications they must be able to run in a distributed
system. As we already have a working local version, moving to a distributed
setting should be less of a challenge, although certain parts of the design would
have to change in order to make this transition.

• Reduce overheads of setting up protocol calls: As we discussed in Section
7.3, despite the fact that our Scribble framework extension can describe many
more practical message-passing APIs than previous implementations, the low
performance of our generated protocol implementations limits the possible ap-
plications where they can be used. In order for this framework to be applied in
a wider range of practical settings we will need to modify our design to reduce
the overheads associated with protocol calls.

• Refine our implementation: We would also like to improve several other parts
of our approach which we did not have the opportunity to work on due to the
time constraints. For instance, as we described in Section 6.4, our current de-
sign has some limitations for defining protocols with the recursion construct.
This issue does not have a great impact on the expressiveness of our implemen-
tation, and should be straightforward to fix given the time. We also make some
assumptions about the protocol declarations provided by the user, like the pay-
load types of the messages being valid Go types, which need to be validated by
the framework.

• Implement higher-order protocols: In the nested protocols theory[12], pro-
tocol definitions can receive different values as parameters during a protocol
call. These parameters can even be other protocols as long as the signature of
the protocol argument matches that of the parameter. These protocol param-
eters can then be used in protocol calls during the execution of the protocol.
The definition of higher-order protocols is not supported in our current imple-
mentation, but it would be a very interesting extension to pursue in the future.
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